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Functions of several variables: 

In more rigorous mathematical language: 



Functions of several 
variables: 

examples of graphs 
for f = f(x,y) 



another kind of visualization 
- so called coloured image maps  
(there exist also so called contour maps) 



another kind of visualization 
- so called coloured image maps  
(there exist also so called contour maps) 



functions f = f(x,y,z) are often visualized in form of voxel maps 



Functions of several variables: 
Functions of several variables are used in science for the description 
of various fields (physical fields, fields of properties ...). 
 

scalar fields: 
e.g. temperature, density,  
       concentration, electric charge,  ... 
       t(x,y,z), ρ(x,y,z), U(x,y,z),... 
 
 
and also vector fields: 
e.g. electrical intensity, fluid velocity, 
       gravitational acceleration,... 
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Functions of several variables: 
Many properties are identical with the case of a function with one variable. 



Functions of several variables: 
Many properties are identical with the case of a function with one variable. 

With the continuity is connected also the so called distance  function d: 



Functions of several variables: 
Some properties are new (compared with a function with one variable). 

Symmetry: 
A symmetric function is a function f is unchanged when two variables             
xi and xj are interchanged: 

where i and j are each one of 1, 2, ..., n. 
  
For example: 

is symmetric in x, y, z since interchanging any pair of x, y, z leaves f 
unchanged, but is not symmetric in all of x, y, z, t, since interchanging            
t with x or y or z is a different function. 
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Functions of several variables: 
Some properties are new (compared with a function with one variable). 

Partial derivatives: 
In the case of functions of several variables, we recognize: 
a) total derivative (all variables can vary and derivatives with respect to all 

variables are involved) 
b) partial derivative (it is a derivative with respect to one of the variables 

with the others held constant) 

In the notation, Leibniz rule is used more often 
(symbol  ∂  is derived from “d” and it was introduced by Legendre –  
  it is called as partial derivative symbol). 
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Example, function f = x2+xy+y2: 

( ) yxyxyxyx
yy

f 22022 +=++=++
∂
∂

=
∂
∂

another tool is given in the next slide: 



Partial derivatives: 

For the beginner it is helpful to imagine instead of a variable (e.g. y)  
for a moment a constant (e.g. b). 



Partial derivatives – few examples: 



Functions of several variables: 
Some properties are new (compared with a function with one variable). 

Total derivative (differential): 
In the case of functions of several variables, we recognize: 
a) total derivative (all variables can vary and derivatives with respect to all 

variables are involved) 
b) partial derivative (it is a derivative with respect to one of the variables 

with the others held constant) 

Example, function f = x2+xy+y2: 
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Differential operators: 

There exist few special operations, which use partial derivatives 
and express properties of analyzed functions of several 
variables – so called differential operators:  

- gradient (grad) 
 

- divergence (div) 
 

- rotation (rot) 
 

- Laplacian operator (divgrad) 

These are used in various descriptions and derivations of basic 
properties of physical fields. 



Differential operators: 

Gradient – show  the direction and size of the greatest change 
of a scalar field in each point of its domain, 
input of the operation: scalar field 
output of the operation: vector field 

Comment to the notation: 
We can write gradient using the so called nabla or del operator  ∇: 
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Differential operators: 

Gradient – show  the direction and size of the greatest change 
of a scalar field in each point of its domain. 
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In physical fields, gradient is always pointing in the direction of 
force lines (perpendicular to equipotential lines). 



Gradient – example (field of positive electrical charge):      (1/3) 

Electrical potential U, caused by a positive electrical point charge 
(Q), situated in the origin of the coordinate system (Cartesian) can 
be described by means of the following equation: 
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where ε0 is the electrical permitivity of vacuum (8.854⋅10-12 F/m). 

Equipotential surfaces of this scalar  
field build spherical surfaces around  
the origin of the coordinate system. 
Gradient is a vector field, which vectors 
point in each point of the space 
perpendicular to these equipotential 
surfaces. 



Gradient – example (field of positive electrical charge):      (2/3) 
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We will evaluate the gradient of this scalar function: 
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First we evaluate the partial derivatives of U with respect to x, y and z. 
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Gradient – example (field of positive electrical charge):      (3/3) 
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This is a vector field, pointing in the same direction as the vector 
and having the size: 
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Differential operators: 

There exist few special operations, which use partial derivatives 
and express properties of analyzed functions of several 
variables – so called differential operators:  

- gradient (grad) 
 

- divergence (div) 
 

- rotation (rot) 
 

- Laplacian operator (divgrad) 

These are used in various descriptions and derivations of basic 
properties of physical fields. 



Differential operators: 
Divergence – tells about the sources of a vector field: when the 
result is zero then there is no source of the field in the point. 
input of the operation: components of vector field 
output of the operation: scalar value field 

Comment to the notation: 
We can write also divergence using the nabla or del operator  ∇: 
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where Ax, Ay, Az are the components of vector      . 
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Comment: Divergence depends on the changes of the size of vector 
components and not the change of their direction. 



Divergence – example (field of electrical charge):             (1/2) 
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To evaluate the divergence of this field, we need to evaluate the 
following derivatives: 
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Field of electrical intensity (a vector field) is given by: 
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Divergence – example (field of electrical charge):             (2/2) 

For all three derivatives we get: 
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This result is valid for all points with the exception of the coordinate 
system origin, where x = y = z = 0 (source area). 



Differential operators: 

There exist few special operations, which use partial derivatives 
and express properties of analyzed functions of several 
variables – so called differential operators:  

- gradient (grad) 
 

- divergence (div) 
 

- rotation (rot) 
 

- Laplacian operator (divgrad) 

These are used in various descriptions and derivations of basic 
properties of physical fields. 



Differential operators: 
Rotation – tells about the existence of so called curls of the 
vector field (not about the sources). 
input of the operation: components of vector field 
output of the operation: vector field 

Comment to the notation: 
We can write also divergence using the nabla or del operator  ∇: 
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Comment: Rotation does not depend on the changes of the size of vector 
components (this was the role of divergence). 
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Rotation – example (field of electrical charge):             (1/2) 
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For the rotation evaluation we need following derivatives: 
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Field of electrical intensity (a vector field) is given by: 
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Rotation – example (field of electrical charge):             (2/2) 

... and for the rotation it is valid: 

From the evaluated derivatives it follows: 
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This result is valid for all points with the exception of the coordinate 
system origin, where x = y = z = 0 (source area). 



Differential operators: 

There exist few special operations, which use partial derivatives 
and express properties of analyzed functions of several 
variables – so called differential operators:  

- gradient (grad) 
 

- divergence (div) 
 

- rotation (rot) 
 

- Laplacian operator (divgrad) 

These are used in various descriptions and derivations of basic 
properties of physical fields. 



Differential operators: 

Laplacian operator – in mathematical physics is often used the 
following (combined) differential operator, 
input of the operation: scalar field 
output of the operation: scalar field 

Comment to the notation: 
We can write gradient using the so called nabla or del operator  ∇: 
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Differential operators: 

Beside this combined operator (Laplacian), the are valid 
following equations: 

( ) 0 ≡gradUrot
( ) 0 ≡Arotdiv



You can try to check it mathematically (make a proof) in a frame 
of a homework. 

These equations have important impacts on the properties of some 
physical fields: 
- the first one tells that so called potential fields (which intensity can 
   be expressed by means of the gradient) can not build curls, 
- the second one tells us that in a curl there are no sources. 
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Functions of several variables: 

Multiple integrals (as „antipole“ of partial derivatives): 
 

The multiple integral is a generalization of the definite integral to functions 
of more than one real variable, for example,  f(x, y)  or  f(x, y, z).  
Integrals of a function of two variables over a region in R2 are called 
double integrals, and integrals of a function of three variables over a 
region of R3 are called triple integrals. 
General form of a multiple integral: 

The domain D of integration is either represented symbolically for every 
argument over each integral sign, or is abbreviated by a variable at the 
rightmost integral sign. 



Functions of several variables: 
Multiple integrals: 
 

Basic rule: the so called changing the order of integration  
                                      (or reversing the order of integration). 

In the case of a double integral: 

We can integrate with respect to x first: 

... or with respect to y first: 

We often say that the first integral is in dxdy order and the second integral        
is in dydx order.  
Limits (bounds) of integration (boxes □ ) can be numbers and sometimes 
also functions. 
Comment: In some situations, we know the limits of integration the dxdy 
order and need to determine the limits of integration for the equivalent 
integral in dydx order (or vice versa). 



Functions of several variables: 
Multiple integrals – simple example: 
 



Functions of several variables: 
Multiple integrals – simple example: 
 



Functions of several variables: 
Multiple integrals – double integrals: 
 

Properties of double integrals (valid also for triple, etc.): 



Multiple integrals – double integrals over general regions: 
 



Multiple integrals – double integrals over general regions: 
 



Double integrals - example (so called Gaussian integral):  
 

In lecture nr.9 (slide nr. 6) we have mentioned that solutions          
of some indefinite integrals do not exist, when we describe               
the primitive functions by means of elementary functions. 
 

One of this functions was also the  exp(-x2), used often in statistics. 
But in the case of an unbounded (improper) integral,  the solution 
can be found by means of a double integral. 
 

So, we try to find the solution of the following (Gaussian) integral: 

We can formulate a square of the searched integral I: 

where the dummy variable y has been substituted for x in the last 
integral. This is now a double integral, which can be rewritten: 

(1/3) 



The product of two integrals can be expressed as a double integral: 

The element of area in polar coordinates 
is given by rdrdθ (exactly: dr⋅rdθ), so that 
the double integral becomes: 

The differential dxdy represents an element of area in Cartesian 
coordinates. An alternative representation of the last integral can be 
expressed in plane polar coordinates r, θ. 
 These two coordinate systems are related by following relations: 

(2/3) 



Integration over θ gives a factor 2π. The integral over r can be done 
after the substitution u = r2, du = 2rdr:  

Finally, we can write: 

This nice and simple solution we were not able to obtain by means 
of the solution of indefinite integral of one variable... 

(3/3) 



Double integrals – next examples:  
 

Using again a double integral in plane polar coordinates (r, θ), 
we can write (element of area in polar coordinates is given by rdrdθ): 
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This gave us the well known formula for circle area evaluation. 

Coming back to the spherical coordinate system (R,    , ϕ): 
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This gave us the well known formula for a sphere surface evaluation. 



Triple integral – example: 
 

Staying with the spherical coordinate 
system (R,    , ϕ): 
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This gave us the well known formula for a sphere volume evaluation. 
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Integrals – additional comments: 
 

In various text-books and scientific papers you can find 
notation of integrals with a circle crossing the symbols of integrals. 
These show integrals evaluated along closed curves or surfaces. 

∫
C

Adl - so called circulation integral 
   (curve integral - along  
               the closed curve C), 
A is the integrated function, 
dl is the element of the curve 

- so called flux integral 
  (surface integral - over  
             the closed surface S), 
E is the integrated function, 
ds is the element of the surface 

∫∫
S

Eds
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