Lecture 9: functions of several variables

Content:

- basic definitions and properties

- partial and total differentiation

- differential operators
- multiple integrals

- examples of multiple integrals



Functions of several variables:

Previously we have studied functions of one variable, y = f(x) in
which x was the independent variable and y was the dependent
variable. We are going to expand the idea of functions to include
functions with more than one independent variable. For example,
consider the functions below:

R [

' 2 32 A
flx,y|=2x"+y / L

glx,y,z) = 2xe”
or

n=1 2

h X, X, X;,X,) = 2X, = X, + 4Xx; + X,

In more rigorous mathematical language:

2 RP SR z: R >R
z(x,y) = ax + by 2(21, X9, ..., Tp) = GTy + ATy + - - + ATy

where g and b are real non-zero constants for p non-zero real constants ay, a;...., ap



Functions of several
variables: :%»
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examples of graphs
for f = f(x,y)
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z = c0s(0.05*x)*s1n(0.05*y)
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another kind of visualization
- so called coloured image maps
(there exist also so called contour maps)
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another kind of visualization
- so called coloured image maps
(there exist also so called contour maps)
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functions f = f(x,y,z) are often visualized in form of voxel maps



Functions of several variables:

Functions of several variables are used in science for the description
of various fields (physical fields, fields of properties ...).

scalar fields:
e.g. temperature, density,
concentration, electric charge, ...

t(x,y,z), p(X,y,z), U(X,y,2),...

and also vector fields:
e.g. electrical intensity, fluid velocity,
gravitational acceleration,...

-------

......




Functions of several variables:
Many properties are identical with the case of a function with one variable.

Limits and Continuity

@ We say that a function f(x,y) has limit L as (x, y) approaches
a point (a, b) and we write

lim flx.yv) =1L
I::x;_yjl—!r[a;b]l ( y}

if we can make the values of f(x, y) as close to L as we like by
taking the point (x, y) sufficiently close to the point (a, b), but
not equal to (a, b).

@ We write also f(x,y) — L as (x,y) — (a, b) and

im  f(x,y)=1L
x—a y—b



Functions of several variables:
Many properties are identical with the case of a function with one variable.

Continuity

@ A function f of two variables is called continuous at (a, b) if

im  f(x,y)= f(a,b)

(x.¥)—(a.b)

@ Examples: polynomials, rational, trigonometric, exponential,
logarithmic functions are continuous on theirs domain.

With the continuity is connected also the so called distance function d:

dlx,y) =d(x1,...,Tn, Y1, Yn) = \/(fﬁ — )24+ (T — Yn)?



Functions of several variables:
Some properties are new (compared with a function with one variable).

Symmetry:
A symmetric function is a function f is unchanged when two variables
X; and x; are interchanged:

f{I!_ ..... IJ}:f{IJ ..... IE_}

where i and j are eachone of 1, 2, ..., n.

For example;:

fle,y,z, ) =t —a* —y* = 2°

IS symmetric in X, Yy, z since interchanging any pair of x, y, z leaves f
unchanged, but is not symmetric in all of x, y, z, t, since interchanging
t with x or y or z is a different function.
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Content:

- basic definitions and properties

- partial and total differentiation

- differential operators
- multiple integrals

- examples of multiple integrals



Functions of several variables:
Some properties are new (compared with a function with one variable).

Partial derivatives:

In the case of functions of several variables, we recognize:

a) total derivative (all variables can vary and derivatives with respect to all
variables are involved)

b) partial derivative (it is a derivative with respect to one of the variables
with the others held constant)

far far Ozf. 5 f 0

In the notation, Leibniz rule is used more often
(symbol ¢ is derived from “d” and it was introduced by Legendre —
it is called as partial derivative symbol).

Example, function f = x?+xy+y?:

of

X"+ Xy + 2X+Yy+0=2x+
A R
gl:a(x2+xy+y2)=0+x+2y=x+2y

another tool is given in the next slide:



Partial derivatives:

For the beginner it is helpful to imagine instead of a variable (e.g. y)
for a moment a constant (e.g. b).

Example 1

: d
Let f(z,y) = y*z?. Calculate a—f (z,u).
:r.

d
Solution: To calculate Ef (z,v), we simply view y as being a fixed number and calculate the ordinary derivative with respect to
x. The first time you do this, it might be easiest to set ¥ = b, where b is a constant, to remind you that you should treat y as though
a
it were number rather than a variable. Then, the partial derivative a—'f (z,y) is the same as the ordinary derivative of the function
T

g(z) = b*z2. Using the rules for ordinary differentiation, we know that

d
Eg z) = 2b°z.

Now, we remember that b = y and substitute y back in to conclude that

af a3
F (z,y) = 2y~ z.



Partial derivatives — few examples:
1. If z = f(z,y) = 2*y® 4+ 8x?y + y* + 5z, then the partial derivatives are

(Note: y fixed, = independent variable, z dependent variable)

d

£ = 4%y + 16zy + 5

? = 3x*y? + 8z? + 4¢° (Note: z fixed, y independent variable, z dependent variable)
Y

2. If z = f(z,y) = (z* + y*)® + In(xz), then the partial derivatives are

% = Wz (x? +y*)° + ! (Note: We used the chain rule on the first term)
ik x
0z _ 2.2 3,9 : : -
F 30y~ (z° +y°) (Note: Chain rule again, and second term has no y)
Y

3. If z= f(z,y) = ze™¥, then the partial derivatives are

d
3—; =" 4 zye™ (Note: Product rule (and chain rule in the second term)
dz 5 : :

x e (Note: No product rule, but we did need the chain rule)

S‘_y:



Functions of several variables:
Some properties are new (compared with a function with one variable).

Total derivative (differential):

In the case of functions of several variables, we recognize:

a) total derivative (all variables can vary and derivatives with respect to all
variables are involved)

b) partial derivative (it is a derivative with respect to one of the variables
with the others held constant)

For a function z = f(x, v, .. , u) the total differential is defined as
0z 0z dz
dz=—dx+_—dy+--+_—du.
(i Y ey

Example, function f = x?+xy+y?:

df :;((x2 + Xy + yz)dXJr;;(x2 + Xy + yz)dy=(2x+ y)dx +(2y + x)dy



Differential operators:

There exist few special operations, which use partial derivatives
and express properties of analyzed functions of several
variables — so called differential operators:

- gradient (grad)
- divergence (div)
- rotation (rot)

- Laplacian operator (divgrad)

These are used in various descriptions and derivations of basic
properties of physical fields.



Differential operators:

Gradient — show the direction and size of the greatest change
of a scalar field in each point of its domain,
Input of the operation: scalar field

output of the operation: vector field

gradU :%UTJFaU]’JraUIZ R
X

oy 0z
where T, J,K are elementary vectors

(pointing In the direction of each
coordinate axis — see 2. lecture, 26.slide)

Comment to the notation:
We can write gradient using the so called nabla or del operator V:

gradU :VU where V:ar+ai+aﬁ
ox oy 0z



Differential operators:

Gradient — show the direction and size of the greatest change
of a scalar field in each point of its domain.

gradU =8UT+GUI+6UR
OX oy 0z

Gradients (in blue) point in direction
levels are increasing the fastest.

In physical fields, gradient is always pointing in the direction of
force lines (perpendicular to equipotential lines).



Gradient — example (field of positive electrical charge):  (1/3)

Electrical potential U, caused by a positive electrical point charge
(Q), situated in the origin of the coordinate system (Cartesian) can
be described by means of the following equation:

1 Q_ 1 Q

47'580 r 47'[80 x/)(2 4+ y2 + 22

U

where ¢, is the electrical permitivity of vacuum (8.854-10-1% F/m).

Equipotential surfaces of this scalar

field build spherical surfaces around

the origin of the coordinate system. -
Gradient is a vector field, which vectors

point in each point of the space

perpendicular to these equipotential

surfaces.



Gradient — example (field of positive electrical charge):  (2/3)

gradU = U |"+aU ]’+8U
OX 0z

We will evaluate the gradient of this scalar function:
y. 1 Q_ 1 Q

47'[80 r 47'580 \/XZ + y2 + 22

because the field of electrical intensity (vector) is given: E = —gradU

K

First we evaluate the partial derivatives of U with respect to x, y and z.

oU Q 5( 2 2 2 yz) Q [ 1)( 2 2 _2132 )
= X 7 = —— | Ix 7 2X | =
OX  4me, OX [ YT T 2 [ YT T

4rg,

-2l
 dne, [X2+y2+22]3/2  Ang B

Partial derivatives %U and %Y are evaluated in a very similar way.
y 0z




Gradient — example (field of positive electrical charge):

ob__ Q (X) oJ _
OX 4rgg\ 13 ) oy
E =—gradU = Q ();TJF
meg \ I

Are, (

(3/3)

) 22l
) o1 Amey\r®

Q (xi+yj+zk) Q r
dme, r 4re, r®

This is a vector field, pointing in the same direction as the vector r
and having the size:

Q 1




Differential operators:

There exist few special operations, which use partial derivatives
and express properties of analyzed functions of several
variables — so called differential operators:

- gradient (grad)
- divergence (div)
- rotation (rot)

- Laplacian operator (divgrad)

These are used in various descriptions and derivations of basic
properties of physical fields.



Differential operators:

Divergence — tells about the sources of a vector field: when the
result is zero then there is no source of the field in the point.
iInput of the operation: components of vector field

output of the operation: scalar value field S e

- OA
dNA:&%+ y+aAZ Wk
ox oy oz Sl
where A, A,, A, are the components of vector A

Comment: Divergence depends on the changes of the size of vector
components and not the change of their direction.

Comment to the notation:
We can write also divergence using the nabla or del operator V:

divA=V-A where V28r+aj+aﬁ
ox oy oz



Divergence — example (field of electrical charge): (1/2)
Field of electrical intensity (a vector field) is given by:

E = gradU = 47?8 (X' +i’g+2kj= E, i +E,J+EK
0

- i D5
" Ameg \r ' oAmgg \r®) " Amegy \r?

To evaluate the divergence of this field, we need to evaluate the
following derivatives:

aEX Q 0 X Q %) X Q ( 3/2)
- = X“+y +1z
oX  4mg, Gx(r?’) 4me, 5x([xz n y2 +22F/ J 4mg, OX [ y }

3/2 52
475%([)( Y T \ jlx +y*+7 T j
47580 ([X +y +Z T X2+y2+22T5/2)




Divergence — example (field of electrical charge): (2/2)

For all three derivatives we get:

oE, ( 2 2, 2 5/2)
X“+Yy +12 —3X X"+ Yy +2Z
OX 47[80 [ y T [ Y T
o= 5/2
Y = X° +y%+z —3y4 X%+ y® + 27 )
oy 4n80 ([ y T Y [ Y T
OE, _ Q ([x2+y2+22 3/2_322[x2+y2+22 5/2)
0z 4mg,
ok
oE, LY +8Ez _ Q (3[x2+y2+22 3/2—3(X2+y2+221X2+y2+22T5/2):
OX oy 07 Ang,

:4Q (B[XZererz2 3/2—3[X2+y2+22 3/Zj:O

This result is valid for all points with the exception of the coordinate
system origin, where x =y =z = 0 (source area).



Differential operators:

There exist few special operations, which use partial derivatives
and express properties of analyzed functions of several
variables — so called differential operators:

- gradient (grad)
- divergence (div)
- rotation (rot)

- Laplacian operator (divgrad)

These are used in various descriptions and derivations of basic
properties of physical fields.



Differential operators:
Rotation — tells about the existence of so called curls of the

vector field (not about the sources).
iInput of the operation: components of vector field

output of the operation: vector field

P ] kK
_ . OA . _( OA
rOtA — o 0 O _; OA, ORy +J(8Ax—aAzj+k y OA
oX oy 0z oy 0z oz  OX ox oy
A A A

Comment: Rotation does not depend on the changes of the size of vector
components (this was the role of divergence).

Comment to the notation:
We can write also divergence using the nabla or del operator V.

rotA=Vx A where Vzar+ai+6ﬁ
ox oy oz



Rotation — example (field of electrical charge): (1/2)
Field of electrical intensity (a vector field) is given by:

£-—gradu = ° (X' Y ”kj: E,i+E,j+EK

Ang, r’

- (e )-8
" Ameo\r Y oAmgg\ 1) 7 dmgy \r?

For the rotation evaluation we need following derivatives:

oE

Z _ Q 0(z . Q 0 Z 3/2
oy _47t808y(r3j_4n80 5y([xz+y2+zz]3/] 471808)/([)( +y +Z T )

_ 2Q ((—;j{xz + y2 + ZzTS/Zzyj _ —3yzQ ([XZ N y2 N 22T5/2)

4mneg Ame,

Ok Q o y —3zyQ 5/2
y _ _ 2 2 .2
oz [ 2 /ZJ ([X ty +<7 T )

Amie, 02 [X2+y2+z ]3 Ame,



Rotation — example (field of electrical charge): (2/2)

From the evaluated derivatives it follows:

OE, ok, 5
oy 0z
In a similar way we can show:
8EX_8EZ:O 5Ey_(9EX:O
0Z  OX oX oYy

... and for the rotation it is valid:

-

j kK
ok _( OE
0 O 5 Ok, Ok, +T(8EX—6EZj+k y OBy
ox oy oz oy oz oz  OX ox oy

E, E, E

D

rotkE =

X JA

This result is valid for all points with the exception of the coordinate
system origin, where x =y =z = 0 (source area).




Differential operators:

There exist few special operations, which use partial derivatives
and express properties of analyzed functions of several
variables — so called differential operators:

- gradient (grad)
- divergence (div)
- rotation (rot)

- Laplacian operator (divgrad)

These are used in various descriptions and derivations of basic
properties of physical fields.



Differential operators:

Laplacian operator — in mathematical physics is often used the
following (combined) differential operator,

Input of the operation: scalar field

output of the operation: scalar field

div(gradU ) - o(0U /ox) N o(6U /oy) N o(oU /oz)
OX oy 0z

0°U N 0°U N 0°U

ox* oyt oz’

div(gradU )=

Comment to the notation:
We can write gradient using the so called nabla or del operator V:

div(gradU )=V -(VU )=V°U =AU



Differential operators:

Beside this combined operator (Laplacian), the are valid
following equations:

rot (gradU )= 0
div (I‘Otﬁ\) =0

These equations have important impacts on the properties of some

physical fields:

- the first one tells that so called potential fields (which intensity can
be expressed by means of the gradient) can not build curls,

- the second one tells us that in a curl there are no sources.

You can try to check it mathematically (make a proof) in a frame
of a homework.
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Functions of several variables:

Multiple integrals (as , antipole” of partial derivatives):

The multiple integral is a generalization of the definite integral to functions
of more than one real variable, for example, f(x,y) or f(Xx,y, z).

Integrals of a function of two variables over a region in R? are called
double integrals, and integrals of a function of three variables over a
region of R3 are called triple integrals.

General form of a multiple integral:

/L flxy,xe,. .., x,) dxy---dxy,

The domain D of integration is either represented symbolically for every
argument over each integral sign, or is abbreviated by a variable at the
rightmost integral sign.

// flxy,xe, ..., x,) dxy- - dx,
dq Tn



Functions of several variables:
Multiple integrals:

Basic rule: the so called changing the order of integration
(or reversing the order of integration).

In the case of a double integral: /f fle,y)dA
JJo

- O f 0O
We can integrate with respect to x first: / ] flr,y)dA = / ( / flx.y) HT.I') dy.
dJ4 D + [ + [

_ . - O f pO
... or with respect to y first: /] Fla.y)dA = / (/ Fla.y) {fﬂ) dr.
JJ D 40 40

We often say that the first integral is in dxdy order and the second integral
IS In dydx order.

Limits (bounds) of integration (boxes O ) can be numbers and sometimes
also functions.

Comment: In some situations, we know the limits of integration the dxdy
order and need to determine the limits of integration for the equivalent
Integral in dydx order (or vice versa).



Functions of several variables:
Multiple integrals — simple example:

Let R = [0,2] x [0, 1]. Evaluate the double integral

f/ re? dA

R

nsing both possible orders of integration,
we can write this double integral as either of the iterated integrals

2l 1 g2
f / re¥dy dr, f / reldr dy.
0 Jo 0 Jo

The former integral is equal to

2 72 . )
- y=1 - (e — 1)z |2
:15':’31"‘ de = [ x(e—1)dr = r ) = 2(e—1).
0 =1l 0 2 0
The latter integral is equal to
1 2 =9 1 1
¥ — dy = [ 2e¥dy = 2¢¥| = 2(e —1).

0 2 lx=0 0 0

As expected, these two iterated integrals are equal to each other.




Functions of several variables:

Multiple integrals — simple example:

Sometimes it is easier to integrate with respect to one variable first instead
of the other variable. For example, let B = [0, 7] x [0, 1], and evalnate the

double integral
// rcos(ry) dA.

R

Which variable is it easier to integrate with respect to first? If we want
to integrate with respect to x, we will need to perform an integration by
parts. However, if we infegrate with respect to y, we need only use a quick
u-substitution, v = xy. Then du = 2 dy. and we get

T el T y=1
// reos(xy) dA = / / rcos(xy) dy dr = / (s;iu[:r;y)‘ ) dr =
0 Jo 0 y=u

R
i
= / sina dr = —cosax
()

= 2.
0

While in principle it does not matter which variable voun integrate with respect
to first, in practice it can be computationally easier to integrate with respect
to one variable first instead of nsing the other variable.




Functions of several variables:
Multiple integrals — double integrals:

Properties of double integrals (valid also for triple, etc.):

¢ For two functions f and g over a region D,

f];)[ﬂﬂ-.ﬂ]WEfodeIdy:/Lf{x,y}ﬁdy+]£}g{¢,y]dmy

e For constant ¢,

/Lﬂf{m,y}dmdy=f:[Lf{z,yjimdy.

o It )= DDy, where Dy and I, do not. overlap except
nerhaps on their boundaries, then

f fﬂ f(z,y)dzdy = f N flz, y)dzdy+ / 5 f(z, y)dzdy



Multiple integrals — double integrals over general regions:
A plane region [ is said to be of type [ if

D ={(z,y)la <z <b,qi(r) <y < go(x)},
where g, and g» are continuous on [a, b].

i F = mdx)

¥ = glxh

Fouopax) g

r" 1
| o
| &

P =

o
B = =
e o
"

Fipre Some type | regions
If f is continuous on a type | region

D ={(z,y)la <z < b q(z) <y < gaof )},
then

f/ﬂf{ia y)dzdy = /‘;ﬁ/::l flx, y)dydr = /: l/::] f(%ﬂ@] dx



Multiple integrals — double integrals over general regions:
Example . Evaluate f | plz + 2y)drdy, where
D={(z,y)] -1<z<1,22° <y <1+2%}.

Solution. Note that D is a region of type [. We have

fL[:n—kEy}d:rdy f flﬂ (x + 2y)dydz
— f_i !/‘::ﬁ {;I:—l—iyjnnydi

1

i
(zy +4)) | dz

(=3z* — 2° + 22° + = + 1)dz

/
_ /_I 2(1 +2°) + (1 +2°)* — (z- 227 + 42%)] dov
/

32

15

3 ;z:“‘+2:r:3+:c9
= __I - 2
5F T3 T3 T te

-1



Double integrals - example (so called Gaussian integral): (1/3)

In lecture nr.9 (slide nr. 6) we have mentioned that solutions
of some indefinite integrals do not exist, when we describe
the primitive functions by means of elementary functions.

One of this functions was also the exp(-x?), used often in statistics.
But in the case of an unbounded (improper) integral, the solution
can be found by means of a double integral.

So, we try to find the solution of the following (Gaussian) integral:

I .‘j
I = / e " dx

We can formulate a square of the searched integral I:

'S 5 2 'S S 0 5
I? = (/ e v d:r) :/ e " dx / e ¥ dy

where the dummy variable y has been substituted for x in the last
Integral. This is now a double integral, which can be rewritten:



(2/3)

» () 2 v (TN (]
1 = e ' dx = e " dr e y* dy
— X — X — 2

The product of two integrals can be expressed as a double integral:

* (TN * ) a 5
= / / e~ YY) dr dy
— — X

The differential dxdy represents an element of area in Cartesian
coordinates. An alternative representation of the last integral can be
expressed in plane polar coordinates r, 6.

These two coordinate systems are related by following relations:

r =rcosf, Yy = rsint r¢ = a2 4 9°
The element of area in polar coordinates i
IS given by rdrd6 (exactly: dr-rd@), so that r
the double integral becomes: \
0

de's 2T
2 5 polar
= / / e " rdrdf O axis
0 0



(3/3)

o0 2m 5
I = / / e " rdrdf
0 0

Integration over 6 gives a factor 2. The integral over r can be done
after the substitution u = r?, du = 2rdr:

2 2 - —u _
I = QW/ e " rdr = QW%/ e "du=m
0 0

Finally, we can write:

= )
/ e dr =/m

This nice and simple solution we were not able to obtain by means
of the solution of indefinite integral of one variable...



Double integrals — next examples:

Using again a double integral in plane polar coordinates (r, 6),
we can write (element of area in polar coordinates is given by rdrd6).
R2rx 2] R

S = Hrdrde 27zjrdr_27z2 O=7zR2

This gave us the well known formula for circle area evaluation.

Coming back to the spherical coordinate system (R, /., Q):

21w z T (R0.0) =

S = ijzsdeSdgp Zﬂszsm.SldS— A

|

T o) ) :
:2ﬂR2[—C039]O:27zR2[1+1]:472R2 o~

This gave us the well known formula for a sphere surface evaluation.

=



Triple integral — example:

Staying with the spherical coordinate
system (R, 1/, Q):

T 2ra

V = _[HR%de.ngodR 27z”R25|n.9d.9dR—

000

( T 52 02
=27zj[—cos.9]OR dR =47 | R?dR =

=4r| 7ra

R°|a| 4
3 0| 3

This gave us the well known formula for a sphere volume evaluation.



Integrals — additional comments:

In various text-books and scientific papers you can find
notation of integrals with a circle crossing the symbols of integrals.
These show integrals evaluated along closed curves or surfaces.

- so called circulation integral c
§ Adl (curve integral - along
the closed curve C),
C A Is the integrated function,
dl is the element of the curve

the closed surface S),
E is the integrated function,
ds is the element of the surface

Eds - so called flux integral
(surface integral - over
S




	Lecture 9:   functions of several variables
	Snímka číslo 2
	Snímka číslo 3
	Snímka číslo 4
	Snímka číslo 5
	Snímka číslo 6
	Snímka číslo 7
	Snímka číslo 8
	Snímka číslo 9
	Snímka číslo 10
	Lecture 9:   functions of several variables
	Snímka číslo 12
	Snímka číslo 13
	Snímka číslo 14
	Snímka číslo 15
	Snímka číslo 16
	Snímka číslo 17
	Snímka číslo 18
	Snímka číslo 19
	Snímka číslo 20
	Snímka číslo 21
	Snímka číslo 22
	Snímka číslo 23
	Snímka číslo 24
	Snímka číslo 25
	Snímka číslo 26
	Snímka číslo 27
	Snímka číslo 28
	Snímka číslo 29
	Snímka číslo 30
	Snímka číslo 31
	Snímka číslo 32
	Lecture 9:   functions of several variables
	Snímka číslo 34
	Snímka číslo 35
	Snímka číslo 36
	Snímka číslo 37
	Snímka číslo 38
	Snímka číslo 39
	Snímka číslo 40
	Snímka číslo 41
	Snímka číslo 42
	Snímka číslo 43
	Snímka číslo 44
	Snímka číslo 45
	Snímka číslo 46

