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Lecture 6:   differentiation – further topics, complex numbers 



Derivatives utilization – Taylor series 
Definition: The Taylor series of a real or complex-valued function 
ƒ(x) that is infinitely differentiable at a real or complex number a is 
the power series: 

 

Taylor series can be also written in the more compact sigma 
notation (summation sign) as: 

In other words: a function ƒ(x) can be approximated in the close 
vicinity of the point a by means of a power series, where the 
coefficients are evaluated by means of higher derivatives evaluation 
(divided by corresponding factorials).  

Comment:  factorial 0! = 1. 
 



Derivatives utilization – Taylor series 

... and in the more compact sigma notation (summation sign): 

When a = 0, the Taylor series is called a  Maclaurin series 
(Taylor series are often given in this form): 

a = 0 

a = 0 



graphical demonstration – approximation with polynomials (sinx) 

nice examples: 
https://en.wikipedia.org/wiki/Taylor_series 
http://mathdemos.org/mathdemos/TaylorPolynomials/ 



Derivatives utilization – Taylor (Maclaurin) series 
Examples (Maclaurin series): 



Derivatives utilization – Taylor (Maclaurin) series 
Taylor (Maclaurin) series are utilized in various areas: 
1. Approximation of functions – mostly in so called local approx. 
       (in the close vicinity of point a or 0). 
       Precision of this approximation can be estimated by so called 
       remainder or residual term Rn, describing the contribution 
       of ignored higher order terms: 
 
 
2. Simplification of solutions – so called linearization: in some   
       solutions (|x| < 1) the higher degree terms can be ignored  
       and only the constant and linear term are used (we do not 
       have to work later on with more complicated higher degree  
       polynomials). 



Derivatives utilization – Taylor (Maclaurin) series 
Local approximation of functions (in local vicinity of an isolated 
point, not on whole interval): 

The error in this  
approximation 
(for −1 < x < 1) 
is less than 0.000003. 



Derivatives utilization – Taylor (Maclaurin) series 
Comment: Derivation of Euler‘s formulas (complex numbers topic): 

eiϕ = cosϕ + isinϕ , e-iϕ = cosϕ − isinϕ,  
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Proof: 
We use the Maclaurin series for the exponential function ex, setting x = iϕ: 

By adding and subtracting of these series we get: 
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Lecture 6:   differentiation – further topics, complex numbers 



Derivatives utilization – L'Hospital's rule:  
L'Hospital's rule for the evaluation of limits of indeterminate 
expressions (expressions of type 0/0 or ∞/∞).: 

when                  exists and g’(x) ≠ 0 is valid for all x in I with x ≠ c.          

Description: L'Hospital's rule states that for functions f and g 
(which are differentiable on an interval I) it is valid: 

Proof (very simple version - with Taylor series):  Let us express 
functions f and g in a simplified version (using linearization): 
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provided that f(c) = 0 and g(c) = 0 (indeterminate expression 0/0). 
(using functions 1/f and 1/g we can proof indeterminate expressions ∞/ ∞). 



Derivatives utilization – L'Hospital's rule:  
Examples: 

1. Function (5x−2)/(7x+3) for x→∞: 

Comment: Solution nr. 2 can be realized only in the case of rational functions. 



Derivatives utilization – L'Hospital's rule:  
Examples: 
2. Function sin(x)/x for x→0  (example from lecture nr. 4, slide 4): 

3. Function ln(x)/√x for x→∞: 

(here we can not use the approach from solution nr. 2 from previous slide) 



Derivatives utilization – L'Hospital's rule:  
Examples: 
Back to previous lecture – proof of the derivative of sin(x) 
(slide nr. 26): 

Trigonometric functions:    sin(x)                                                  2/2 



Derivatives utilization – L'Hospital's rule:  

Example: 

When the result of L’Hospital’s rule application is still an 
indeterminate expressions of type 0/0 or ∞/∞, it can be  
applied again (and again...) – several times, until we get  
a determinate expression. 



Derivatives utilization – L'Hospital's rule:  

Example: 

L’Hospital’s rule can be applied to expressions of type 0⋅∞, 

by means of reformulating them to 0/0 or ∞/∞. 



Derivatives utilization – L'Hospital's rule:  

Example: 

Sometimes we have to solve quite special situations, like 
expressions of type: 00 or ∞0 or 1∞ (also indeterminate forms). 
Also here the L’Hospital’s rule can be applied very effectively.  
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Lecture 6:   differentiation – further topics, complex numbers 



Derivatives utilization – functions graph course analysis  

Derivatives represent an important tool in the course analysis   
of functions graphs – the signs of the 1st and 2nd derivatives      
of a function tell us something about the shape of its graph. 
 

- it is important to find parts of the function, which are  
       increasing and decreasing (based on the sign of the first  
       derivative), 
- furthermore find the so called stationary points (f ’(x) = 0), 
       which are connected with extremes of the function, 
- and finally distinguish, if these stationary points are  
       extremes (maxima or minima) or inflection points – based 
       on the sign of the second derivative of the function. 
 

comment: very useful is also to find the zero points (points, 
                 where the function graph is crossing the x-axis) 



Derivatives utilization – functions graph course analysis  
Repetition form the 3rd lecture: increasing and decreasing 
functions – for all numbers a and b in the domain of the function     
f it is valid: 

Connection between these properties and sign of the first derivative 
gives the following theorem: 

This theorem follows from the sign of the expression, occurring in the limit 
of the derivative definition: 



Derivatives utilization – functions graph course analysis  
increasing and decreasing function – example (cubic function): 



Derivatives utilization – functions graph course analysis  
increasing and decreasing function – example (cubic function): 



Derivatives utilization – functions graph course analysis  
Repetition form the 3rd lecture: maxima and minima of a function: 

Similar properties have also global minima and local minima. 

Comment: maxima and minima - together are called extremes. 



Maxima and minima of a function - connection to derivatives: 



Maxima and minima of a function - connection to derivatives: 

In other words – an extreme of a function is defined by the 
condition f ’(x) = 0. This is used during the analysis of function 
courses (shapes of graphs). 

Derivatives utilization – functions graph course analysis  

Slope of the 
tangent in such 
a graph point is 
equal to zero. 
 

Beside this, 
first derivative  
change its sign  
in the close 
vicinity of these  
points 
 



Maxima and minima of a function - connection to derivatives: 

Decision about 
minima/maxima 
was made on the 
increasing and  
decreasing 
property –  
but we have 
another tool for it, 
the second 
derivative. 

(lets have a look back to slide nr. 24) 



Maxima and minima of a function - connection to derivatives: 
Derivatives utilization – functions graph course analysis  

This is so called inflection point (flex): 
a point on a curve at which the curve changes from being concave to 
convex, or vice versa (we will come to it later). 



Derivatives utilization – functions graph course analysis  
Maxima and minima of a function - connection to derivatives: 

When we find points, where f’(x) = 0, then these can be extremes 
(minima, maxima), but in some special cases also not. 
Decision on this point we get, when we analyze the second derivative f’’(x): 



Maxima and minima of a function - connection to derivatives: 



Derivatives utilization – functions graph course analysis  

Convex and concave shapes (inflection points): 

Comment: There are quite different modifications of these terms –  
                   we will come to it later on. 



Derivatives utilization – functions graph course analysis  

Convex and concave shapes (inflection points): 

Quite good visualization of transition between convex and concave: 
https://en.wikipedia.org/wiki/Inflection_point 



Different terms are used worldwide: 
Convex function is also synonymously called convex downward     
or concave upward. 
 

Concave function is also synonymously called concave downward 
or convex upward. 

convex convex 
convex concave 

concave 
concave 

Convex and concave shapes: 

example from   www.mathsisfun.com. 

Comment: In some scientific branches (e.g. cartography, geomorphology) 
 these two terms are switched. 



Example – functions graph course analysis (finding extremes):  

1/2 



Example – functions graph course analysis (finding extremes):  

2/2 
For the exact graph construction we need also the zero points 
(obtained from the solved equation y = 0). 



Next example – functions graph course analysis (finding extremes):  

1/2 



Next example – functions graph course analysis (finding extremes):  

2/2 Comment:  Saddle point – it is an inflection point of the function. 
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Lecture 6:   differentiation – further topics, complex numbers 



Different types of numbers have many 
different uses.  
Numbers can be classified into sets, called 
number systems. 

Slide from 1. lecture: Basic objects in mathematics:  numbers, sets 

i – so called 
     imaginary unit 



Complex numbers - introduction 
 

Definition: A complex number is a number that can be expressed 
in the form a + ib, where a and b are real numbers and i is the 
imaginary unit, that satisfies the equation  i 2 = −1. 
a – the so called real part of the complex number, 
b – the so called imaginary part of the complex number. 

Complex numbers extend the concept of the one-
dimensional number line to the two-dimensional complex 
plane by using the horizontal axis for the real part and 
the vertical axis for the imaginary part.  
The complex number a + ib can be identified with the 
point (a, b) in the complex plane.  
A complex number whose real part is zero is said to be 
purely imaginary (0+ib), whereas a complex number 
whose imaginary part is zero is a real number (a+i0).    
In this way, the complex numbers contain the ordinary 
real numbers while extending them in order to solve 
problems that cannot be solved with real numbers alone. 

Example: 



Complex numbers - introduction 
 

Definition: A complex number is a number that can be expressed 
in the form a + ib, where a and b are real numbers and i is the 
imaginary unit, that satisfies the equation  i 2 = −1. 
a – the so called real part of the complex number, 
b – the so called imaginary part of the complex number. 

Imaginary unit i was not selected randomly as  i 2 = −1, but 
because this plays very important role in various solutions         
of equations and other mathematical problems.  

010x3x2 =+−

Example (quadratic equation with negative discriminant): 
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geometrical 
presentation 
of quadratic 
equation 
solutions: 



Complex numbers - introduction 
 

Definition: A complex number is a number that can be expressed 
in the form a + ib, where a and b are real numbers and i is the 
imaginary unit, that satisfies the equation  i 2 = −1. 
a – the so called real part of the complex number, 
b – the so called imaginary part of the complex number. 
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back to the previous example: 

Complex solutions are plotted in the 
complex  plane (so called Argand diagram): 
   z = a + ib = x + iy 

Comment:     is called as complex conjugate 
number (imaginary part has opposite sign). 



Complex numbers - introduction 
 

Form: A complex number can be written in two 
basic forms: 
1.    Cartesian form (with real and imaginary parts): 
        z = a + ib = x + iy 
2.    goniometric or exponential form                           
      (using the so called Euler’s formula): 
        z = r(cosϕ + isinϕ) = reiϕ. 

Comment to the imaginary unit: 
i = √−1 ,  i 1 = i,   i 2 = −1,  i 3 = i⋅i 2 = −i,  i 4 = i 2⋅i 2 = 1, i  5 = i 4⋅i = i 
i −1 = i/i 2= −i , … 

where: 
r – modulus (magnitude) of a complex number 
     (also called as absolute value:                                         ) 
ϕ – argument of the complex number: 
      it is also valid (for k = 0, 1, …): 

zzyxrz ⋅=+== 22

( ) ( )xyarctgzArg == ϕ
( ) ( ) kxyarctgz πϕ 2arg +==



Complex numbers – introduction 
 

Euler’s formulas:  
  
    eiϕ = cosϕ + isinϕ , e-iϕ = cosϕ − isinϕ,  
 

Derivation (proof) of these formulas will be given later. 
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Leonhard Euler 
1707 - 1783 



Complex numbers – basic operations 
Equality: 
Two complex numbers are equal if and only if both their real and 
imaginary parts are equal.  
We can write this in math-symbols: 

Conjugation: 
The complex conjugate of the complex number z = x + iy is defined 
to be x − iy. It is denoted            . 
Geometrically, conjugate complex number is the "reflection" of the 
complex number about the real axis. Conjugating twice gives the 
original complex number: 
 



Complex numbers – basic operations 
Addition and subtraction: 
Complex numbers are added by adding the real                            
and imaginary parts of the summands. 
Addition: 
(a + ib) + (c + id) = (a + c) + i(b + d) 

Similarly, subtraction: 
(a + ib) – (c + id) = (a – c) + i(b – d) 

Multiplication and division: 
The multiplication of two complex numbers is defined by the 
following formula: 

(a + ib)(c + id) = (ac – bd) + i(bc + ad) 
And, division: 
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Complex numbers – basic operations 
Multiplication and division: 
We can use in a much more straight-forward way the 
exponential form of complex numbers: 
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Or in the goniometric form: 
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Complex numbers – basic operations 

Raising to a power (exponentiation): 
Here we can express this kind of operation much more 
effectively again with the exponential form of complex numbers: 

[ ] ϕϕ innnin errez ==

In Cartesian form this operation is more complicated and it 
utilises the so called binomial rule: 
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Complex numbers – basic operations 

nth root evaluation: 
Also here we can express this kind of operation much more 
effectively again with the exponential form of complex numbers: 

[ ] ( )[ ] ( ) ===== ++ nkinnkininn errerezz πϕπϕϕ 211211   

( ) ( ) ( )[ ]nkninknrer nnknin πϕπϕπϕ 2sin2cos21 +++== +

Here we can see that the result of nth root of a complex number 
is not unique – it has n solutions (for k = 0, 1, 2, ... n−1). 
These solutions lie on a circle with the radius r1/n and their 
arguments are different by 2π/n. 



nth root evaluation – example: 
We have a complex number  z = 8√2 + i8√2 
and we have to evaluate its 4th root:       . 
First of all we have to evaluate its modulus r and the main argument ϕ, 
r  = [(8√2)2+(8√2)2]1/2 = 16 and the main argument ϕ = arctg(1) = π/4. 
Therefore we can write: z = 16eiπ/4 = 16[cos(π/4)+isin(π/4)] and for        : 

( ) ( )[ ]nkninknrz nn
k πϕπϕζ 2sin2cos +++==

4 z

( ) ( )[ ]=+++== 424sin424cos1644 πϕπϕζ kikzk

4 z

( ) ( )[ ] 3. 2, 1, 0,kfor    216sin216cos2 =+++= ππππ kik



( ) ( )[ ]=+++== 424sin424cos1644 πϕπϕζ kikzk

( ) ( )[ ] 3. 2, 1, 0,kfor    216sin216cos2 =+++= ππππ kik

These 4 solutions lie on a circle with the radius 2 and their 
arguments are different by π/2. 



Complex numbers – functions 

We distinguish here two basic types: 
a) complex functions of real variable, 
b) complex functions of complex variable. 

A) Complex function of real variable: 
       we call z = f(t) as complex function of real variable, when  
        z∈C and t∈R. 

Examples: 
 

1. z = t eiα, t∈<0, +∞>, α = const. 
Values of t from the interval <0, +∞> are displayed into a half-line 
 in the complex plane (forming an angle α with the real axis). 
 z = t eiα = t(cosα + isinα) ⇒ x = tcosα, y = tsinα ⇒ y = xtgα. 
     (this is an equation for a line)  



A) Complex function of real variable: 
       we call z = f(t) as complex function of real variable, when  
        z∈C and t∈R 

Examples: 
 

2. z = r eit, r = const., t∈<α, β>, α ≥ 0, β ≤ 2π. 
Values of t from the interval <α, β> are displayed into a circle-arc 
 in the complex plane (forming an angle α with the real axis). 
 z = r eit = r(cost + isint) ⇒ x = rcost, y = rsint. 
When we build sum of squares x2 + y2, we obtain: 
x2+y2 = r2cos2t+r2sin2t = r2 (cos2t+sin2t) = r2  ⇒  x2+y2 = r2, 
     (this is the equation of a circle) 
 

3. z – z0 = r eit, r = const., t∈<0, 2π>. 
 This is a very similar example, compared with the previous one, result 
  is a circle in the complex plane with the centre in point z0. 



Complex numbers – functions 
B)    Complex function of complex variable: 
       we call w = f(z) as complex function of complex variable, when  
       w∈C and also z∈C. Such a function can be divided into its  
       real and imaginary parts:  f(z) = u(x,y) + i v(x,y). 

These functions can have completely different properties like  real number functions. 



Complex numbers – functions 
B)    Complex function of complex variable: 
       Example:  f(z) = cos(z) . 
For its analysis we use one of Euler’s formulas: 2
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setting for z = x + iy and by reformulating we get: 

where we have used the hyperbolic functions sinh(x) and cosh(x): 



B)    Complex function of complex variable: 
       Example:  f(z) = cos(z) 

Recognising here the form of this kind of function:  f(z) = u(x,y) + i v(x,y): 

First important thing, which we can see is that this function is not 
limited (like it was valid for the real function cos(x)), but it can 
grow to ±∞ due to the properties of hyperbolic sine and cosine:  

Next property is its periodicity: 
cos(z) = cos(z + 2kπ), when k = 1, 2, ... 



Next thing is the analysis of its geometrical properties: 
1. First, we take a line segment y = y0, x∈<0, 2π> 

B)    Complex function of complex variable: 
       Example:  f(z) = cos(z) 

This is equation 
of an ellipse. 

Using cos2x+sin2x=1 
we get: 



Next thing is the analysis of its geometrical properties: 
2. Second, we take a line x = x0, y∈<−∞, +∞> 

B)    Complex function of complex variable: 
       Example:  f(z) = cos(z) 

Using cosh2y−sinh2y=1 
we get: 

This is equation 
of a hyperbole. 



Applications, involving complex numbers: improper integrals, 
geometry, signal analysis, fluid dynamics, dynamic equations, 
electromagnetism, , quantum mechanics, relativity 

model of physical field in close vicinity of an object 
(as a result of a solution, involving complex numbers) 
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