Lecture 6: differentiation — further topics, complex numbers

Content:

- derivatives utilization - Taylor series

- derivatives utilization - L'Hospital's rule

- functions graph course analysis

- complex numbers, introduction

- complex numbers, basic operations

- complex numbers, functions



Derivatives utilization — Taylor series

Definition: The Taylor series of a real or complex-valued function
f (x) that is infinitely differentiable at a real or complex number a is
the power series:

| (a) (a) ) 3
f{I):f[:ﬂ.}—k T (x —a) + 51 (x —a)” + T (x —a)” 4 -

In other words: a function f(x) can be approximated in the close
vicinity of the point a by means of a power series, where the
coefficients are evaluated by means of higher derivatives evaluation
(divided by corresponding factorials).

Taylor series can be also written in the more compact sigma
notation (summation sign) as:

<~ (g
f0=y I @ oy

Comment; factorial 0! = 1.




Derivatives utilization — Taylor series
When a = 0, the Taylor series is called a Maclaurin series
(Taylor series are often given in this form):

f'(a) f"(a) f"(a)

flx)= fla) + T (x —a) + 50 (z —a)® + 3 (x—a)*+---
a=0
f(:l.‘)if(@)-}-fl(?)ilf+f2(!0)1?2—|—fg(!o);ra_|_...

... and in the more compact sigma notation (summation sign):
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graphical demonstration — approximation with polynomials (sinx)

f'lo)  f"(0) f"(0) 3

) — , 2
f(z)= f(o) + T T+ T + T x4 ...
- =
P1(x) PS(X)

P9(x)
P3(X) ;
'\
sinx

P7(x)

nice examples:
https://en.wikipedia.org/wiki/Taylor_series
http://mathdemos.org/mathdemos/TaylorPolynomials/



Derivatives utilization — Taylor (Maclaurin) series

Examples (Maclaurin series):
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Derivatives utilization — Taylor (Maclaurin) series

Taylor (Maclaurin) series are utilized in various areas:

1. Approximation of functions — mostly in so called local approx.
(in the close vicinity of point a or 0).
Precision of this approximation can be estimated by so called
remainder or residual term R,,, describing the contribution
of ignored higher order terms:

o 1) f(a)
@)= fla) + e — @) + S5 (@ — )

fﬂ!(a)
3!

(x — 0)3 + - -} Ry(x)

2. Simplification of solutions — so called linearization: in some
solutions (|x| < 1) the higher degree terms can be ignored
and only the constant and linear term are used (we do not
have to work later on with more complicated higher degree
polynomials). ,

f'(0)

flx)= f(o) + T




Derivatives utilization — Taylor (Maclaurin) series

Local approximation of functions (in local vicinity of an isolated
point, not on whole interval):

sin(x)
f(x)

The error in this

approximation

f 1<x< 1 The sine function (blue)is closely approximated by =
( or X ) its Taylor polynomial of degree 7 (pink) for a full period
IS less than 0.000003. centered at the origin.



Derivatives utilization — Taylor (Maclaurin) series
Comment: Derivation of Euler's formulas (complex numbers topic):

el? = cosg + ising, e'? = cosg — ising,

COS @ = efre” Sin g = e —e”
2 21
Proof:
We use the Maclaurin series for the exponential function eX, setting X = i¢:
: 2 .3 4 5

e _ 1, ¢ ¢ 1y P 1P
S TR TR TR T TR
TS U A e L

o203 4 5
By adding and subtracting of these series we get:

2 1 6 16 i
. L 2 2 e"+¢e
e'r +e ""=2(1—T;T —%—11 —E—T+...)=2L'tJH; — COSop=
3 5 7 i i
i _ig : 2 2 2 . : e’ —¢e
¢'¥ —e 'Y =21 -.,:—2 + - — -+ ... ]| =2ising = Sine= :
3! 5! /! 21
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Derivatives utilization — L'Hospital's rule:
L'Hospital's rule for the evaluation of limits of indeterminate
expressions (expressions of type 0/0 or oo/o0).:

Description: L'Hospital's rule states that for functions f and g

(which are differentiable on an interval 1) it is valid:

(x (a
m—}t Q[I) ﬁ:—}t g{ }
exists and g’(x) # O is valid for all x in | with x = c.

T,

when lim
T—+C g I)

Proof (very simple version - with Taylor series). Let us express
functions f and g in a simplified version (using linearization):

f(c+h)~ f(c)+hf'(c), g(c+h)~g(c)+hg'(c)
i f(c+h):“m f(c)+ hf '(c):Iim hf '(c):Iilm f'(c)
>0 g(c+h) hm-0g(c)+hg'(c) nohg'(c) o g'(c)

provided that f(c) = 0 and g(c) = O (indeterminate expression 0/0).
(using functions 1/f and 1/g we can proof indeterminate expressions o/ ).




Derivatives utilization — L'Hospital's rule:
Examples:

1. Function (5x—2)/(7x+3) for x—oo:

Sr — 2

Find hm = .
r—oo (I ‘;

Solution 1: We have

. hr—2 X . (b —=2) . (bx)y =2 . b =2
lim — - lim ——— lim ——- lm
r—oo (T + 3 X r—oe (T2 4+ 3) r—oe (Tx) +3 2 ix' 3
5-1—10 SIS
lim = __ lim = = =
roe (] } 0 r—oc | [
Solution 2: We have
. . Ex—2 5x 2 -2 -
. br—2 X0 : = L L0 — 3 5—0 5
im — . — lim = lim = = lm —= = ¢ -
r—oc (T + 3 O r—oo LEXS r—oo £E 2 r—oo [ - = 7 40 i
I I I r

Comment: Solution nr. 2 can be realized only in the case of rational functions.



Derivatives utilization — L'Hospital's rule:
Examples:

2. Function sin(x)/x for x—0 (example from lecture nr. 4, slide 4):
=11

Find hm
r—0 7

Solution: We have

. osInT 0 . (smx) . cosr cosl |
l1m — lhm —— = hm — |
r—0 () r—0 7 r—0 ] | |

(here we can not use the approach from solution nr. 2 from previous slide)

3. Function In(x)/Vx for x—o0:

. o Inx
Find hm —.
r—oc /T

Solution: We have

s 0 . (Inx) ! L.
hm — [ }




Derivatives utilization — L'Hospital's rule:
Examples:

Back to previous lecture — proof of the derivative of sin(x)
(slide nr. 26):

Trigonometric functions: sin(x) 212

Hence by the formulas

lim (4 1 and lim - 0
h—0 h h—0 h

o ek e . sin(h) . cos(h)—1
sin'(z) = 1113}) cos(x) 7 + sin(z) ;

= cos(z)-1+sin(z) -0

= cos(z).

A similar computation leads to the derivative of cos z.



Derivatives utilization — L'Hospital's rule:

When the result of L'Hospital’s rule application is still an
Indeterminate expressions of type 0/0 or co/co, it can be

applied again (and again...) — several times, until we get
a determinate expression.

Example:
By —sin 5r () . (B —smbx) 5 —5coshr
lim ; —| = lim — lim —
x—0 T () r—0 (°) x—0 3
. (5 —=5coshrY . 25 sin b 1 25
[1m — lim : -
r—0 (3x=) x—0 b 5

0
0



Derivatives utilization — L'Hospital's rule:

L’'Hospital’s rule can be applied to expressions of type 0-o0,

by means of reformulating them to 0/0 or oo/oo0.

Example:

. . . Inz | lnz) . 7!

hm (sinxnx) hm — [1m ( j , [1m , -
x—0+ r—0+ (sinx) 1 -0+ ((sinx) 1) r—0+ —(8INT ) “CosT

r—0+ 0= T r— 0+ T COs T

' 3 ' '
| SI” , SINT ST
— hm — him ( , ) —1-0=10



Derivatives utilization — L'Hospital's rule:

Sometimes we have to solve quite special situations, like
expressions of type: 0° or oo or 1* (also indeterminate forms).

Also here the L’'Hospital’s rule can be applied very effectively.

Example:
. . !
Find lim z'/=.
Ir—
. . 'y . . .
Solution: Note that lim z!/% is oc? type of an indeterminate form.
L yp
Put
y — E]._,."llilf
then
/ 1 Inz
my=lnz"*=—Inez=—
T T
We have
. Inx C ‘ Inz) o] 1
llm—:[—]:hm( ):hm—:hm—:{]
T—0o0 T N r—oo ! r—oo | r—00 T
. I;II _ 0 o
Therefore Im /" =e =1

Ir—o
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Derivatives utilization — functions graph course analysis

Derivatives represent an important tool in the course analysis
of functions graphs — the signs of the 15t and 2" derivatives
of a function tell us something about the shape of its graph.

- Itis important to find parts of the function, which are
Increasing and decreasing (based on the sign of the first
derivative),

- furthermore find the so called stationary points (f '(x) = 0),
which are connected with extremes of the function,

- and finally distinguish, if these stationary points are
extremes (maxima or minima) or inflection points — based
on the sign of the second derivative of the function.

comment: very useful is also to find the zero points (points,
where the function graph is crossing the x-axis)




Derivatives utilization — functions graph course analysis

Repetition form the 3rd lecture: increasing and decreasing
functions — for all numbers a and b in the domain of the function

fitis valid: fis... if for all @ and b one has...

Increasing: a < b = f(a) < f(b)
Decreasing: a <b = f(a) > f(b)
Non-increasing: a < b = f(a) = f(b)
Non-decreasing: a <b = f(a) < f(b)

Connection between these properties and sign of the first derivative

gives the following theorem:

Theorem.
If a function is non-decreasing on an interval a < x < b then f'(x) = 0 for all x in that interval.
If a function is non-increasing on an interval a < x < b then f'(z) <0 for all x in that interval.

This theorem follows from the sign of the expression, occurring in the limit
of the derivative definition:
flx+ Ax) — f(z)
Ar




Derivatives utilization — functions graph course analysis
Increasing and decreasing function — example (cubic function):

Graph of a cubic function. Consider the function
y=f(x)=2"—z.
Its derivative is
f'(z) =32 — 1.
We try to find out where f’ is positive, and where it is negative
Fe) =3(a* — 4) = 3(a+ 1VE) (2 — 1D
from which vou see that
fi(x) >0 forz < —%V’E
f'(z) < 0 for —%ﬁ{r{%\/ﬁ
f'(x)=>0for x> %V’E
Therefore the function f is

increasing on [:—-:x:,—%\/i), decreasing on (—%V’E%\/E) increasing on (%vﬁ :x,)



Derivatives utilization — functions graph course analysis
Increasing and decreasing function — example (cubic function):

A
|
|
I >
|
|
| |
| |
| |
| |
< > > _
fl(z)>0 i fllx) <0 i fi(x) >0

[ | |

| |
r = —% 3 r = %\fﬁ
The graph of f(z) = 2 — =
Therefore the function f is
increasing on (—oo, —15\/5) decreasing on (—é V3, 15\/3) increasing on (11 V3,00).



Derivatives utilization — functions graph course analysis
Repetition form the 3rd lecture: maxima and minima of a function:

Maxima and Minima

A function has a global mazimum at some a in its domain if f(x) < f(a) for all other » in the domain
of f. Global maxima are sometimes also called “absolute maxima.”

A function has a lgcal mazximum at some a in its domain if there is a small 6 > 0 such that f(z) < f(a)
for all # with @ — é < # < a + 4 which lie in the domain of f.

Every global maximum is a local maximum, but a local maximum doesn’t have to be a global maximum.

Similar properties have also global minima and local minima.

abs max [H

P 4 4] obhal mazimum
ocC max
oAl raximum

loc max

1

]

1

!

]

1

|

]

1

]

i o[-
i . q
: loc min i
O O
a b

SeCal mEinrmum

| shal mimirmun

B - =

abs min 0 .2 0.4 0.8 (eF] i i.2

Comment: maxima and minima - together are called extremes.




Maxima and minima of a function - connection to derivatives:

7.1. Where to find local maxima and minima. Any z value for which f'(z) = 0 is called a

statronary point for the function f.

7.2. Theorem. Suppose f is a differentiable function on some interval |a,b].

Every local marimum or minimum of f is either one of the end points of the interval [a,b], or else it is a
stationary point for the function f.

Proor. Suppose that f has a local maximum at x and suppose that x is not a or b. By assumption the
left and right hand limits

Ar) — Ar) —
f@)zgg%fw+-;2 f@}mﬁfqﬂ:iﬂﬁﬂﬂm+£;i.ﬂﬂ

both exist and they are equal.

Since f has a local maximum at r we have f(z + Az) — f(z) < 01if —0 < Az < 4. In the first limit we
also have Ax < 0, so that
im [@+ AT~ @)
Az 70 Ar

Hence f'(z) < 0.
In the second limit we have Az > 0, so

i J@+AD) @)
Azx™0 Ax

which implies f'(z) = 0.
Thus we have shown that f'(z) < 0 and f'(x) = 0 at the same time. This can only be true if f'(x) = 0.




Derivatives utilization — functions graph course analysis

Maxima and minima of a function - connection to derivatives:

In other words — an extreme of a function is defined by the
condition f ’(x) = 0. This is used during the analysis of function

courses (shapes of graphs). Slope of the

abs max tangent In such
. a graph point is

loc max equal to zero.

Beside this,
first derivative
_____ change Iits sign

In the close
vicinity of these

points

loc max

loc min

abs min



Maxima and minima of a function - connection to derivatives:

Example — local maxima and minima of f(z) = * —z, we had found that the function
f(x) = x® — x is decreasing when —oo < = < —1,/3, and also when 1,/3 < z < o0,

while it is increasing when —% V3 < < /3. It follows that the function has a local minimum
at r = —:]—51..;“’3, and a local maximum at x = ig,,f.l

A Decision about
minima/maxima
was made on the
Increasing and

> decreasing
property —

| g but we have

fl@)>0 another tool for it,

2= -1V3  2=1y3 the second
The graph of f(z) =z — . derlvatlve

f@) >0

Its derivative is f'(x) = 32" — 1. (lets have a look back to slide nr. 24)



Derivatives utilization — functions graph course analysis
Maxima and minima of a function - connection to derivatives:

A stationary point that is qpither a maximum nor a minimum.

If j'uu look fnr-:at;lti-mmr}r points of the function }'[.r‘}.z r° you find that
there’s only one, namely r = 0.

The derivative f'(z) = 3z? does not change sign at = = 0,

And mn fact, r = 0 1s neither a local maximum nor a local mimimum since

f(z) < f(0) for x < 0 and f(z) >0 for z > 0.

This is so called inflection point (flex):

a point on a curve at which the curve changes from being concave to
convex, or vice versa (we will come to it later).



Derivatives utilization — functions graph course analysis

Maxima and minima of a function - connection to derivatives:

When we find points, where f'(x) = 0, then these can be extremes
(minima, maxima), but in some special cases also not.

Decision on this point we get, when we analyze the second derivative f’(x):

The second derivative test. We saw how you can tell if a stationary point is a local
maximum or minimum by looking at the sign changes of f'(x).

There is another way of distinguishing between local maxima and minima which involves
computing the second derivative.

Theorem.

If ¢ is a stationary point for a function f, and if f"(c) < 0 then f has a local mazimum at r = e,
If f"(e) > 0 then f has a local minimum af c.

The theorem doesn’t say what happens when f"(¢) = 0.

In that case you must go back to checking the signs of the first derivative
near the stationary point.



Maxima and minima of a function - connection to derivatives:

Example — that cubic function again. Consider the function f(z) = 3 — 7

and f'(z) = 32* —1. Since f"(z) = 6x we have
f"(—3v3) =—2y/3<0and f"(3v3) =23 > 0.

Therefore f has a local maximum at —%JB and a local minimum at L-,/S

A

fl(z) <0 | fi(z)>0

The graph of f(z) = 2* — .



Derivatives utilization — functions graph course analysis

Convex and concave shapes (inflection points):

By definition, a function f is conwvex on some interval a < = < b if the line segment connecting
any pair of points on the graph lies above the piece of the graph between those two points.

The function is called econecawve if the line segment connecting any pair of points on the graph
lies below the piece of the graph between those two points.

is called an inflection point.

A point on the graph of f where

Instead of “convex” and “concave” one often says “curved upwards” or “curved downwards.”

You can use the second derivative to tell if a funetion is concave or convex.

= A\

A convex function. A concave function. A function that is neither

No line segment lies below No line segment lies L}I::uw, CONCAYE MO COMVEX.
the graph at any point. the graph at any point.

Comment: There are quite different modifications of these terms —
we will come to it later on.



Derivatives utilization — functions graph course analysis

Convex and concave shapes (inflection points):

A A

convex not convex

If a graph is convex then all chords lie above the graph.

If it is not convex then some chords will cross the graph or lie below it.

Quite good visualization of transition between convex and concave:
https://en.wikipedia.org/wiki/Inflection_point



Convex and concave shapes:

Different terms are used worldwide:

Convex function is also synonymously called convex downward
or concave upward.

Concave function is also synonymously called concave downward
or convex upward.

Inflechon

concave convex ICC)FPVﬁX
relection
Inﬂﬂl'.'"h[}n convex conca concave
Point Foind
LONCOavE ..{;:rﬂ:-:nw Concowe N Conciawe Contove N Cord.ove
Dowwriward Upward Upward  Townward Upward  Downisard

example from www.mathsisfun.com.

Comment: In some scientific branches (e.g. cartography, geomorphology)
these two terms are switched.



Example — functions graph course analysis (finding extremes):

Example: Find the maxima and minima for:

y = 5x% + 2x? — 3x

The derivative (slope) is:

d ., _ 2 _
=Y 15xc +4x — 3

Which is guadratic with zeros at:

e x = —3/5
o x =+1/3

Could they be maxima or minima? (Don't look at the graph yet!)

The second derivative is y" = 30x + 4

At x = —3/5:
—~3» y' =30(—3/5)+4=-14
~3 it is less than 0, so —3/5 is a local maximum

1/2



Example — functions graph course analysis (finding extremes):

The second derivative is y" = 30x + 4

At x =+1/3:

~3p y'=30(+1/3)+4 = +14

~3 it is greater than 0, so +1/3 is a local minimum

{(Mow you can look at the graph.)

Ay

1

N

=
1x

For the exact graph construction we need also the zero points

(obtained from the solved equation y = 0).

2/2



Next example — functions graph course analysis (finding extremes):
Example: Find the maxima and minima for:
vy =x7 —6x2 +12x — 5

The derrvative Is:

Ay =3x2 - 12% + 12

oy

Which is guadratic with only one zero at x = 2

Is it a maximum or minimum?

1/2



Next example — functions graph course analysis (finding extremes):

The second derivative is y"' = 6x — 12

Atx =2:
~3p y'=06(2)—-12=10
~3 it is 0, so the test fails

And here is why:

41*;

2.

0 -
0 | 2 X

It is a saddle point ... the slope does become zero, but it i1s neither a maximum or
minimum.

Comment: Saddle point — it is an inflection point of the function. 212
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Slide from 1. lecture: Basic objects in mathematics: numbers, sets

Different types of numbers have many
different uses.

Numbers can be classified into sets, called
number systems.

|

Main number systems

M | Natural 0,1,2,3,4, .0or1,2,3, 4, 1523
7, | Integer a0, -4,-3,-2,-1,0,1,2,3,4,5, . Rational
()  Rational -—g where a and b are integersand bisnot0 | - _ 54459 = (No Ratio)

The limit of a convergent sequence of lrrational
B Real _
rational numbers

a + biwhere a and b are real numbers and § .
C | Complex | — so called

is the square root of -1 . . :
imaginary unit



Complex numbers - introduction

Definition: A complex number is a number that can be expressed

in the form a + Ib, where a and b are real numbers and i is the
imaginary unit, that satisfies the equation i 2= -1.

a — the so called real part of the complex number,
b — the so called imaginary part of the complex number.

Complex numbers extend the concept of the one- Example:
dimensional number line to the two-dimensional complex  Re(—=3.5+ 2i) = 3.5
plane by using the horizontal axis for the real part and Im(—3.5+ 2i) =2
the vertical axis for the imaginary part.

The complex number a + ib can be identified with the Im

point (a, b) in the complex plane. A a+bi

A complex number whose real part is zero is said to be brF==--2¢

purely imaginary (0+ib), whereas a complex number |
whose imaginary part is zero is a real number (a+i0). l
In this way, the complex numbers contain the ordinary |
real numbers while extending them in order to solve |
problems that cannot be solved with real numbers alone. 0

P Re




Complex numbers - introduction

Definition: A complex number is a number that can be expressed

in the form a + 1b, where a and b are real numbers and i is the
imaginary unit, that satisfies the equation i 2= -1.

a — the so called real part of the complex number,
b — the so called imaginary part of the complex number.
Imaginary unit | was not selected randomly as i2=-1, but

because this plays very important role in various solutions
of equations and other mathematical problems.

Example (quadratic equation with negative discriminant):

5 —b + Vb2 — 4ac
X —-3x+10=0 X = >

‘ 3+ 3°-4.110 3+ 31 _3+i /31 _x,=32+(i2) 31
2 2 2 x, =32—(i/2)./31




geometrical
presentation
of quadratic
equation
solutions:

Value of the
discriminant

Example showing nature of roots
ofaxX+bx+e=10

Graph indicating x-intercepts
¥=ax?+bx +c¢

POSITIVE
b —dac =0

ZERO
b —4ac=0

NEGATIVE
flg —dac<0

¥ +6x+5=0
. 61 J6* - 4((5)
2(1)
=5 + 16 _ 614
2 2

There are two real roots.

(If the discrimdinant iz 3 perlct sguars, the two
foots a2 rational nomberz, If the discriminant iz
not 3 perfct squars, the two roots e imationsl

nunbers containing & radical.)

2
X' =2x+1=0
_=(=2)x J(-2)" - 4(TH1)
2(0)

1

-Etf-

There is one real root.
{The root1s repeated.)

Y =3x+10=0
_ (-3 -4(0)
2(1)
33 J-31
2

3+14/31 C3-if31

2 2

X

x

There are two complex roots.

]

-

There are two x-intercepts.

There is one x-intercept.

There are no x-intercepts.



Complex numbers - introduction

Definition: A complex number is a number that can be expressed

in the form a + Ib, where a and b are real numbers and i is the
imaginary unit, that satisfies the equation i 2= -1.

a — the so called real part of the complex number,
b — the so called imaginary part of the complex number.

back to the previous example:

x, =32+(i2). /31 ] N
X, =3/2-(i/2)/31 r

Complex solutions are plotted in the \@ > %
complex plane (so called Argand diagram): 0 }cp X

z=a+ib=x+1y

Comment: 7 is called as complex conjugate
number (imaginary part has opposite sign). =y




Complex numbers - introduction

Form: A complex number can be written in two

basic forms: Im
1. Cartesian form (with real and imaginary parts): A 2=x+iy
z=a+ib=x+1iy \J B -
2. goniometric or exponential form r
(using the so called Euler’s formula): (@
z = r(cos@ + ising) = rel. 0 x > X
where:
r — modulus (magnitude) of a complex number
(also called as absolute value Z=r= «/ =
¢ — argument of the complex number Arg = arct (y/x)
It 1S also valid (for k=0,1,. Z arg( ) — rctg( /X)+ 2 1k

Comment to the imaginary unit:
i=V-1,il=i i2=-1, i%8=ii2=—j, i4=i2i2=1,i5=i%4i=i|
L =ili2=-i,



Complex numbers — introduction

Euler’'s formulas:

e'? = cose + ising , €' = cose — ising,

Leonhard Euler

COS@ = e’ +e7” Im 1707 - 1783
A Z=X+1y
. ' —g7'¢ o

Derivation (proof) of these formulas will be given later.



Complex numbers — basic operations

Equality:

Two complex numbers are equal if and only if both their real and
Imaginary parts are equal.

We can write this in math-svmbols:
z1 = z3 +» (Re(z;) =Re(z) A Im(z) = Im(2;))

Conjugation:
The complex conjugate of the complex number z = x + iy is defined
to be x — iy. It is denoted z or z*

Geometrically, conjugate complex number is the "reflection" of the
complex number about the real axis. Conjugating twice gives the
original complex number:

Conjugation distributes over the standard arithmetic operations:

z4+w =2z +u,
I—w=z—u,
W = zw,

(z/w) = Z/w.




Complex numbers — basic operations
Addition and subtraction:
Complex numbers are added by adding the real

and imaginary parts of the summands. a
Addition:
(@a+ib)+(c+id)=(a+c)+i(b+d) ) b
Similarly, subtraction:
(@a+ib)-(c+id)=(a-c)+i(b-d) pareletogrEm

Multiplication and division:

The multiplication of two complex numbers is defined by the
following formula:

(a + ib)(c + id) = (ac — bd) + i(bc + ad)

And, division: a+ib ac+bd . bc-ad
— = +1
c+id c¢*+d? c?+d?




Complex numbers — basic operations

Multiplication and division:

We can use in a much more straight-forward way the
exponential form of complex numbers:

2,2, = r1e|(91 , rze'% — rlrzel(%"‘(ﬁz)

lp .
Zl — rlel rl e|(¢1_¢2)

Z, e T,

Or in the goniometric form:

212, = [COS(% + @, )+ | Sin(% + @, )]

L= " eos(p, - @, )+isin(g, — 0, )
Z, I



Complex numbers — basic operations

Raising to a power (exponentiation):
Here we can express this kind of operation much more
effectively again with the exponential form of complex numbers:

- n -
Zn — I:reI(D:I — rneln(D

In Cartesian form this operation is more complicated and it
utilises the so called binomial rule:

Ej “(n —nli)!k!



Complex numbers — basic operations

nth root evaluation:

Also here we can express this kind of operation much more
effectively again with the exponential form of complex numbers:

n'z = 40 _ {reigo]]/n: {rei(¢+2kﬁ)]ﬂn: (Ungilp+2kr)n _

= ringilent2kzn) —n ¢ [cos( /n+ 2k 'n)+isin(p n+2kz/n))

Here we can see that the result of nth root of a complex number
IS not unique — it has n solutions (fork =0, 1, 2, ... n-1).

These solutions lie on a circle with the radius r¥n and their
arguments are different by 2xz/n.



Qo

(1

(3

£, ="'z ="r[cos(p /n+2kz/n)+isin(p/n+2kz/n)]

nth root evaluation — example:

We have a complex number z = 82 +i8v?2

and we have to evaluate its 4™ root: % .

First of all we have to evaluate its modulus r and the main argument ¢,
r = [(8V2)2+(8V2)2]2 = 16 and the main argument ¢ = arctg(1) = n/4.
Therefore we can write: z = 16e'™* = 16[cos(n/4)+isin(n/4)] and for 4/7 -

£, =47 ="16|cos(p 4+ 2kz/ 4)+isin(p 4+ 2kz/4)|=
= 2|cos(z/16 + kz/2)+isin(z/16 +kz/2)] fork=0,1,2,3.

=2

— 2

cos(m/16) + isin(m/16)] = 2"/

[ : . : v 1 a - i(m/ /2
cos(m /16 + 7/2) + isin(w /16 + 7/2)] = 2!/ 16+7/2)

cos(m/16 + m) + isin(m/16 + )] = 2ei(7/16+m)

cos(m /16 + 3m/2) + isin(7/16 + 37 /2)] = 2¢i(7/16+37/2)



£, =47 =216[cos(p 4+ 2k 4)+isin(p 4+ 2kz/4)]| =
= 2|cos(z/16 + kz/2)+isin(z/16 + kz/2)| fork=0,1,2,3.

o |Im

Lo = 2e™

cl | .){__i[:,-" 1647/2)

Re

g = ag>"

(3

These 4 solutions lie on a circle with the radius 2 and their
arguments are different by «/2.



Complex numbers — functions

We distinguish here two basic types:
a) complex functions of real variable,
b) complex functions of complex variable.

A) Complex function of real variable:

we call z = f(t) as complex function of real variable, when
zeC and teR.

Examples:

1.z =t el?, te<0, +00>, o = const.
Values of t from the interval <0, +oo> are displayed into a half-line
In the complex plane (forming an angle « with the real axis).
z =tele=t(cosa +ising) = X = tcosa, y = tsina = y = xtgc.
(this is an equation for a line)



A) Complex function of real variable:
we call z = f(t) as complex function of real variable, when

zeC and teR

Examples:

2.z=rel r=const., te<a, >, o >0, f< 27.
Values of t from the interval <o, 3> are displayed into a circle-arc
In the complex plane (forming an angle « with the real axis).
z =r e =r(cost + isint) = X = rcost, y = rsint.
When we build sum of squares x? + y?, we obtain:
X%+y?2 = r2cos?t+r?sin?t = r2 (cos?t+sint) = r° = Xx2+y?2 =r?,
(this is the equation of a circle)
3.z-2z,=re" r=const., te<0, 2>

This is a very similar example, compared with the previous one, result
IS a circle in the complex plane with the centre in point z,,.



Complex numbers — functions

B) Complex function of complex variable:
we call w = f(z) as complex function of complex variable, when
weC and also zeC. Such a function can be divided into its
real and imaginary parts: f(z) = u(x,y) + 1 v(X,y).

o

\ g
()

w(z + Az)

o

d

w(z)

L—

These functions can have completely different properties like real number functions.



Complex numbers — functions

B) Complex function of complex variable:
Example: f(z) = cos(z) .

'’ +e7'?
For its analysis we use one of Euler’s formulas: COS@ = 9
]_ iz — 1z
cos(z) = S(* + e )

setting for z = x + Iy and by reformulating we get:
cos(z) = cos(x +1y) = cos(x) cosh(y) — isin(x) sinh(y)

where we have used the hyperbolic functions sinh(x) and cosh(x):

10
75

(e +e7) 5

2.5

cosh(y) =

-2.5

(e?

sinh(y)

|
.
I
=

-5

-15

sinh(y)



B) Complex function of complex variable:
Example: f(z) = cos(z)

cos(z) = cos(x +1iy) = cos(x)cosh(y) — isin(x)sinh(y)
Recognising here the form of this kind of function: (z) = u(x,y) + i v(X,y):
Relcos(z)| = u(z, y) = cos(x) cosh(y)

Im|cos(z)| = v(z,y) = —sin(z) sinh(y)

First important thing, which we can see is that this function is not
limited (like it was valid for the real function cos(x)), but it can
grow to +oo due to the properties of hyperbolic sine and cosine:

/2

Jcos(2)| = (u? +v?) " = {[cos(z) cosh(y)]? + [sin(z) sinh(y)]*}

Next property is its periodicity:
cos(z) = cos(z + 2kn), when k=1, 2, ...



B) Complex function of complex variable:
Example: f(z) = cos(z)
cos(z) = cos(x +1y) = cos(x) cosh(y) — isin(x) sinh(y)
Next thing is the analysis of its geometrical properties:
1. First, we take a line segmenty =vy,, xe<0, 21>

® |
3_ y =konst v
7 x —konst
Y—="1o
__________ 5 s
_— —~—
b T~
1 ///;--""':_'_““"u:\\\
// AN \\
( LT~ \
: T I 0 ( ff:::*l':-'—-'-wi::\\ \ U
' w1 NS===
NG =/
-1+ NS =4/
L] Lz - \:____,,.;/
2] —
3
Tr = _1?(] L I T T T T T T I . I ; i :
-3 2 - 0 1 2 3
2 2

Using cos?x+sin?x=1 u v _ 1 This is equation
we get: cosh? Yo sinh” Yo of an ellipse.



B) Complex function of complex variable:
Example: f(z) = cos(z)
cos(z) = cos(x +1y) = cos(x) cosh(y) — isin(x) sinh(y)
Next thing is the analysis of its geometrical properties:
2. Second, we take a line X = X,, ye<—ow, +0o>

®
3_ y =konst v
] r =konst
Y= 1o
—————————— 2 L
- ~—
. T~
R ==
(/5=
T . 0 ( [ [{7==T=30 \ U
' . ' [ N 7
T T S
NS
L Lo - O =
P ~__ -
3
=0 i I I I | | |
3 2 -1 0 1 2 3

Using cosh?y—sinh?2y=1  u? B v _ 1 Thisis equation

: ' -2
we get: cos?ry sin® xg of a hyperbole.




model of physical field in close vicinity of an object
(as a result of a solution, involving complex numbers)

Applications, involving complex numbers: improper integrals,
geometry, signal analysis, fluid dynamics, dynamic equations,
electromagnetism, , quantum mechanics, relativity
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