Lecture 8: definite integrals, properties, applications

Content:

iIndefinite and definite integrals, examples

(little bit repetition from previous lecture plus new facts)
- some properties of definite integrals

- Improper integrals

- applications of definite integrals



Integration — repetition (previous lecture)

Integration Is an opposite operation to differentiation
(summation of infinitesimally small parts of the function f(x) ) —

First fundamental theorem of calculus: the indefinite integration
of a function f(x) is related to its antiderivative.

We recognize two main types of integrals:
a) indefinite integral — the result is a function, f(JC) ck

b) definite integral — the results is a number b
(evaluated indefinite integral at the endpoints I

of an interval <a, b>: x =a and x = D). f(x)éc
)

Notation: The integral sign [ represents integration. The symbol dx, called
the differential of the variable x, indicates that the variable of integration is x.
The function f(x) to be integrated is called the integrand.

If a function has an integral, it is said to be integrable.

The points a and b are the endpoints — called also as the limits (or bounds)
of the integral.




Integration — repetition (previous lecture)

Roughly speaking, the operation of integration is the reverse

of differentiation. The antiderivative, a function F(x) whose derivative
IS the integrand f(x) (also called as primitive function).

1. In the case of an indefinite integral we can write:

[ £(x)dz = F(x)

so it is valid: F'(x) = f(x)

but at the same time: (F+c)f=F“=f(;r) where c is a constant, ceR
(so called arbitrary constant of integration),

SO we can write:
/f(.r) dr = F(x)+c
2. In the case of an definite integral we can write (on interval <a,b>):

[ 7@)dz = F(t) - Fla)

where F(a) and F(b) are the primitive functions values for limits a and b.




to calculate definite integrals
we have first to evaluate
Indefinite integrals...

repetition from previous
lecture:

Common Functions
Constant

Variable

Square

Reciprocal

Exponential

Trigonometry (x in radians)

Rules

Multiphcation by constant

Power Rule (n=-1)

Sum Rule
Difference Rule

Integration by Parts
Substitution Rule

Function Integral
_ra dx ax + C
Jx dx ®2/2 + C
Jx2 dx %3(3 + C
J(1/x) dx In|x| + C
_rex dbx ex+
[a= dx a%fIn(a) + C
JIn(x) dx xIn(x) —x + C
_]'cc:s[xj dx sin(x) + C
Isin(x]l dx -cos(x) + C
IsecEExj dx tan(x) + C
Function Integral
Jcf(x) dx cJf(x) dx
_f-x"' dx ¥ 1/n+1) + C

_r[f + qg) dx _rf dx + _rg dx
Jif-q) dx Jfdx- [qgdx

See Integration by Parts

See Integration by Substitution
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Definite integrals — simple examples:
Example

3 3
3 _1 47 _ 1724 14 _ 81 16 __ 65 __

/

'I'his notation means:
evaluate the function at
3 and 2, and subtract the
results.

Example

“3x+5dx =276

0
An antiderivative for f(x) = 3x + 5 1s F(x)= %X "+ 5x

So: J;23x +5dx=F(12) - F(0) =276 - 0 = 276



Definite integrals — simple examples:

Example:

[sin(x)x = cos(x)] = [-1-1]-2

Example:

-1
j‘ xe” +1
X

dx :fexdx - jl)l( dx :(ex - Inx):; = (e‘l - Inl)— (e‘2 +1In 2):
2 2

:(1+O)—(12+In2j:1—12—ln2
e e e e

-2



But what to do in the case of the use of substitution method?

During the application of substitution we change the integration
variable — so we should also change the actual limits or solve
this problem in the end after the back-substitution.

2 3t S
Example L 7o dt substitution

becomes du

becomes u

Whent=2,u = 8.



But what to do in the case of the use of substitution method?

[ Practice Example
X
"V1+e™

e4x

Method I: Firstly compute ——dx
y p C 1+€4x : |
_ 4x dx ) 4x _l _5+
u=l+e ° dx=l 4€—dx=ljidu=l uzdu=l “ +C
du = 4e** dx 1+ e 47 J1+e" 47 Ju 4 4_1_,_1

! V1+e™

=—u*+C=
2

+C

2
4x
J: c - dx=%\)1+e4‘ ;=%V1+eq—%\/l+eﬂ —V1l+e' ——

l+e™”

Method II: u=14+e" uw0)=1+e&""=2,u(D)=1+¢""=1+¢"

1
g (1 4e™ 1 GD1 e <L 1w
_ __ / - — _ 1+e
Lﬁwdx‘ﬁomdx-a;\/;d“-ﬂz Ty
2
l+e 'J1+e J_




Comment to the geometrical meaning:

Definite integral is equal to the area under
a curve between bounds a and b — so
called a Riemann sum of right rectangles:

Y

ﬂg/ — qb, il

Riemann sums converging

formally written as: f

llmz f(x): b-a

s H

J ) dx =




Comment to the geometrical meaning:

Definite integral is equal to the area under a curve between bounds a and b
— s0 called a Riemann sum of right rectangles:

Y f(x) = sin(x)

Examples:

[sin(x)dx [ cos(x)] = [-1-1]-2

0

Y fi{x) = sin{x)

2fsin(x)dx =[—cos(x)] ZOR =-[1-1]=0




Comment to the geometrical meaning:

Definite integral is equal to the area under a curve between bounds a and b
— s0 called a Riemann sum of right rectangles:

2 T

1.9

1

Comment: Entering the limits into the primitive function solves the problem
with the correct signs of the involved (appropriate) areas.

Exercise with MATLAB: To show the integration of sin-function, using
the trapz() built-in function of Matlab (numerical method for integration).

T yi4 4 I 034
i 3 2 &

radians 8] LA
3

COS X 1 0.866.| 0,207 0.500 0 —0.500
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Definite integrals — some properties

splitting the interval of integration <a,b>

- change of bounds

- Identical bounds

- even and odd functions (definite integrals of them)
- so called “mean value theorem”

- Integral as a function of its integration bounds



Definite integrals — some properties (splitting the interval)

Definite integrals have one other property for which there is no analog in
indefinite integrals: if you split the interval of integration into two parts, then
the integral over the whole is the sum of the integrals over the parts.

The following theorem says it more precisely:

Theorem. Given a < ¢ < b, and a function on the interval [a,b] then
b o b
f flx)dr =f flz)dzx —f flx)dz.
i i o

Proor. Let F be an antiderivative of f. Then
e b
[ flx)dr = F(c) — F(a) and f flz)dr = F(b) — F(c),
=0 that ;
f flz)dr = F(b) — F(a)
=F(b)— Flc)+ F(c) — Fla)

o b
=f flf.r.';:r,f;a'—f

flx)dz.



Definite integrals — some properties (change of bounds)

So far we have always assumed that a < b in all definite integrals JI"rJ L
i
The fundamental theorem suggests that when b < a, we should

define the integral as:

f flz)dr = F(b) — F(a) = —(F(a) — F(b)) f flx)dz.

0 1
] rdr = — [ rdr = —
| 0

Simply: When we change the order of integral bounds, the final integral
will change its sign.

For instance,

[
|-\.-I'_
L

Comment: Integral over the interval with length zero — is equal to zero:

[ f@)dz =




Definite integrals — some properties (even and odd functions)

When we have an even function g(x) on a symmetrical interval <-a, a>,
then it is valid:

a 0 a -a
jg(x)dx: jg(x)dx+jg(x)dx: j dx+jg
-a -a 0 0
—a - t=-x a a
_—jg(x)dx dt = —dx +jg dx jg dt+jg
0 X——a t = 0 0

j dt+jg dx jg dx+_[g dx 2jg
0

The result is twice the area from the half of the interval.

¥ )
gi-x) = glx) hi-x) = -hx)

A B NI I 7 AN

Even function O lunction




Definite integrals — some properties (even and odd functions)

When we have an odd function g(x) on a symmetrical interval <-a, a>,
then it is valid:

'T h(x)dx = ? h(x)dx + T h(x)dx =— __[ah(x)dx + T h(x)dx =
—a - t=-x a a a
=—[h(x)dx| dt=—dx |+ [h(x)dx=[h(~t)dt+[h(x)dx =
0 x=-a,t=a| ° 0 0
= T— h(t)dt +_Th(x)dx = — h(x Jox + j h(x)dx =0
The result is zero.

gl-x) = glx) hi-x) = -hx)

A B NI I 7 AN

Even function O lunction




Definite integrals — some properties (mean value theorem)

First mean value theorem for definite integrals:
Let f(x) be a continuous function on <a, b>. Then there exists a point c in <a, b>,

such that it is valid:

[ 1@)dz ~ 5(c)(b - a)

N

f(c)

f(x)

Q

a b X a c b X
Simply: The area below the graph f(x) can be approximated by a rectangle

with the height f(c) — and for continuous functions there always

exists such a point c in <a, b>
(... and we do not have to know its exact value).



Definite integrals — some properties
(the definite integral as a function of its integration bounds)

What will happen when we set for the upper bound not a number,
but a variable?

Consider the expression
I = 5: t2 dt.
Jo

What does I depend on?

To see this, you calculate the integral and you find

I = [lf:}}x_l 3 103 1.3

3t Jo =3 —3Y =3

So the mtegral depends on z.

It does not depend on ¢, since t 1s a “dummy variable”,

In this way yvou can use integrals to define new functions.

Such expressions are called as integrals as a function of its upper bound
(in general: function as a function of its integration bounds).



The definite integral as a function of its integration bounds.

An example of a function defined by an integral is
the “error-function” from statistics. It is given by

of 2 [T _
erf(x) d:f\—E[J et dt,

so erf(x) 1s the area of the shaded region in figure.

Area = ert(x)

H i

Figure. Definition of the Error function.

The integral cannot be computed in terms of the standard functions
(square and higher roots, sine, cosine, exponential and logarithms).

Since the integral occurs very often in statistics it has been given
a name, namely, “erf(x)”.



The definite integral as a function of its integration bounds.

An interesting question arises (?):

How do you differentiate a function that is defined by an integral?

The answer is simple

d [* d T
L[ 1w de= L {p@) - @) = P = 1)

d [*
—TL f(t) dt = f(z).

Comment: For indefinite integrals it is clear that the differentiation
of their result is the original function (it is an opposite operation).
But this is not the case for definite integrals (because the results
of them are numbers=constants);
Only for the definite integral as a function of its integration bounds
we can write this result.

and therefore
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Definite integrals — improper integrals
The Riemann's definition of a definite integral requires the function f(x) to be
bounded (smaller in absolute value than infinity).
We call a definite integral as improper, when:
a) function f(x) becomes unbounded on <a,b> or
b) the interval <a,b> becomes unbounded (i.e. a = —wo and/or b = +x).

Both situations can be sometimes solved by means of the solution of a limit case

(when the solution converges):

case a): lim bf()cl:t lim Cf()

c—at [, c—b~

case b): lim f:t:} dz, lim / f(z)dz

a——20

Example (case a) ):

11 |
VT_CII —ﬂE%l+ v—/_dI = ﬂll,rél (2 2‘,/_) =2

Example (case b) ):

vl b
1 1 1
[ gz de=fm ] de—b‘l,“;(—sﬁ):l



Definite integrals — improper integrals

case a):

lim/f:t:)d:t: llm f[)

-I'_':—i"ﬂ-l_ |
|
|
|
|
|
|
|
4
a C

case b):




Definite integrals — improper integrals

Example (case a) ):

L dr o — dx i L dr
/r‘iﬂ Tz i), Va2

= lim 3 1—ﬂ+llm3 1— /1)

s—0

=3+ 3
= 6.

Example (case b) ):

o t
j 0 _Zj =2lim | dX2 = 2Iim[arctan(x)]t =
J14x° 1+X*  tomd 14X t> 0

= 2lim[arctan(t)- arctan(0)] = 2!im[arctan(t)] =

oo




Definite integrals — improper integrals

Example (case b) ) — sometimes a substitution can cause an occurrence
of an improper integral:

tgar = ¢
z . x = arctgf e 1 ) oc 1
— — 1 — — —
fﬁmdm_ o= ged _f 1+ & '1+tﬂdt_f froe 4=
—3 [t _% s e — i i+ﬁ1 —
5o 4o

Comment: Some integrals do not converge — in such cases they reach
infinite values (they diverge).
Example:

T b—r:x:u-]_I

P b
/ld:ﬂ:lim 1u:il:‘:::r::m.
1
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Definite integrals — applications

Many definite integrals have applications in mathematics and physics.
Let us give some of them.

Distance from velocity

Motion along a line. If an object 1s moving on a straight line, and if its position

at time ¢t is z(t), then we had defined the velocity to be v(t) = 2'(t).

Therefore the position 1s an antiderivative of the velocity, and the fundamental theorem
of calculus says that

[ h v(t) dt = x(tp) — x(t,),

. L !

or

th
xz(ty) = x(t,) —1—/ v(t) dt.

In words, the integral of the velocity gives you the distance travelled of the object

(during the interval of integration).

distance from velocity (1/3)



Different way of derivation — by means of geometrical meaning:

The distance can also be obtained using Riemann sums.

Namely, to see how far the object moved between times ¢, and t;
we choose a partition t, =tp <t < --- <ty = 1.
Let Asj. be the distance travelled during the time interval (f._q,%1).
The length of this time interval is Afp =t — 1.
During this time interval the velocity v(f) need not be constant,
but if the time interval is short enough then we can estimate
the velocity by v(ep) where ¢ is some number between #;._, and ;.
We then have

Asr = v(ck) Al
and hence the total distance travelled is the sum of the travel distances
for all time intervals £, <t < 1},
ie.
Distance travelled = Asy +--- + Asy = v(ey )Aty +--- + v(ewy )Aty.
The right hand side is again a Riemann sum for the integral.
As one makes the partition finer and finer vou therefore get

th
Distance travelled = f v(t) dt.
o distance from velocity (2/3)



ty
It = #&\lg (t) dt
additional comment: z(ty) = 2(t J+/tu v(t) dt

The return of the dummy.

Often you want to write a formula for x(t) = - - -
rather than z(t;) = --- as we did,

i.e. you want to say what the position is at time ¢, instead of at time £,.
For instance, you might want

to express the fact that the position z(f) is equal to the initial position z(0)
plus the integral of the velocity from 0 to . To do this you cannot write

t
2(t) = 2(0) + / o(t)dt = BAD FORMULA
0

because the variable ¢ gets used in two incompatible ways: the ¢ in z(£) on the left,
and in the upper bound on the integral ( [ ") are the same, but they are not the same
as the two t's in v(t)dt. The latter is a dummy variable .

To fix this formula we should choose a different symbol for the integration variable,
So you can write

2(t) = 2(0) + L " o(d) df

distance from velocity (3/3)



Definite integrals — applications
Next application:

Motion in the plane — parametric curves.

To describe the motion of an object in the plane

you could keep track of its  and y coordinates at all times .

This would give you twe functions of £, namely,

x(t) and y(t), both of which are defined on the same interval tq <t <t
which desecribes the duration of the motion you are describing.

In this context a pair of functions (z(t),y(t)) is called a parametric curve.

parametric curves (1/4)



Definite integrals — applications

As an example, consider the motion described by

r(t) =cost, y(f)==sint(0 <t <2m).

In this motion the point (z(t),y(f)) lies on the unit circle since

z(t)? + y(t)* = cos®t +sin’t = 1.

As f increases from 0 to 2w the point (z(f),y(f)) goes around
the unit circle exactly once, in the counter-clockwise direction.

(x(t), y(t))

t=0

=2x

parametric curves (2/4)



Definite integrals — applications

Length of a parametric curve.

Let (z(f),y(t)) be some parametric curve defined for £, <1 < ;.

Choose a partition ta =to < t1 < --- <itn =1 of theinterval [t,,].

You then get a sequence of points Fy(z(to), y(to)). Pi(z(t1), y(t1)),
ooy Pn(z(tn),y(tn)), and after “connecting the dots” you get a polygon.

The distance between two consecutive points P, and P is

Asp =/ (Azp)? + (Ayp)?

ﬁTk)z (&y:ﬂ)ﬁ
— — —E) AfL
\/( Aty N Aty k

~ /T (e)? + ' (er)? Aty

.ﬂﬂ?k
Aty Aty
by the derivatives z'(er) and y'(¢cp) for some ¢ in the interval [t._q, tx].
parametric curves (3/4)




Definite integrals — applications
The total length of the polygon is then

\/.‘1‘-"{[51}2 + y’{cljz .&f] + --- 4 \//III:ZE]_)E — y’{ﬂl)z ﬂ'tf--l

This is a Riemann sum for the integral [ ;:' V' (t)? +y'(t)? dt,
and hence we find (once more) that the length of the curve is

§ = [ﬁh V' (t)? £y (t)? dt.

Example: the unit circle
Our length formula tells us that the length of the unit circle is

2 2w
L= V()2 +y(t)2 dt = [ 1 dt =2m.
o ()

J ()

given z(t) = cost, y(t)=sint, (0<t<2m)
and computed /z'(t)? + y'(t)% = 1.

parametric curves (4/4)



Definite integrals — applications
The total length of the polygon is then

Va'(e)2 +y'(e)? Aty + -+ v/2'(ey)? + 3/ (ey)? Aty

This is a Riemann sum for the integral f » V'(t)? +y'(t)? dt,
and hence we find (once more) that the leng’ch of the curve is

3_/ vVa'(t t)2 dt.

The length of the graph of a function.
The graph of a function (y = f(z) witha < 2 < b) is
also a eurve in the plane, and yvou can ask what its length is.

We will now find this length by representing the graph as a parametric curve.

The standard method of representing the graph of a function y = f(x)
by a parametric curve is to choose

z(t) =1, and y(t) = f(f), fora <t <b.
Since z'(f) = 1 and y'(f) = f'(f) we find that the length of the graph is

b
_ / VI (02 dt. parametric curves -
a - length of function (1/3)




Definite integrals — applications

The length of the graph of a function

The variable ¢ in this integral is a dummy variable and -
we can replace it with any other variable we like, for instance, a:

b
L:/ V1+ f(x)? da

Example:

We have a linear function f(x) = x and would like to know
Its length on the interval <0,2>:

L = leJr > dx = jﬂdx fjdx 2[2-0]=22

Can we somehow check this result on the graph?

parametric curves -
- length of function (2/3)



Definite integrals — applications

b
_ L = / vV 14+ fi(x)? da
The length of the graph of a function Ja

Example:  Find the length of the function f(x) = x2/4 — Inx/2
on the interval <1,10>:

First of aII, we need to express the derivative of this function:

x2_lnx _2x 11 _x 1 S x-1
4 2 4 2X 2 2X 22X

.. and its squared version (plus one):

2 2
X2 -1 X*—2x%+1 AxP+x*-2x%+1 xP4+2x%+1 (x2+1)2 X2 +1
1+ =1+ = = = =

2X 42 Ax? I VY IV 2X

Finally we can solve the integral:

2 10 10
L= j S +1 jx =T [xaxr L= ho? -1 Hinto-ing)- 22110
2 21T 1Ty 2 4

12X 2

parametric curves -
- length of function (3/3)
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