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Lecture 8:   definite integrals, properties, applications 



Integration – repetition (previous lecture) 
 
Integration is an opposite operation to differentiation           
(summation of infinitesimally small parts of the function f(x) ) – 
 
 

First fundamental theorem of calculus: the indefinite integration 
 of a function f(x) is related to its antiderivative. 
 

We recognize two main types of integrals: 
a) indefinite integral – the result is a function, 
 

b) definite integral – the results is a number 
     (evaluated indefinite integral at the endpoints 
      of an interval <a, b>: x = a  and  x = b). 
 
Notation:  The integral sign ∫ represents integration. The symbol dx, called  
the differential of the variable x, indicates that the variable of integration is x. 
The function f(x) to be integrated is called the integrand.  
If a function has an integral, it is said to be integrable. 
The points a and b are the endpoints – called also as the limits (or bounds) 
of the integral. 



Integration – repetition (previous lecture) 

Roughly speaking, the operation of integration is the reverse 
of differentiation. The antiderivative, a function F(x) whose derivative 
is the integrand f(x) (also called as primitive function).  
1. In the case of an indefinite integral we can write: 
 
 
   so it is valid: 
 
   but at the same time:                                  where c is a constant, c∈R 
   (so called arbitrary constant of integration), 
   so we can write: 
 
 
2. In the case of an definite integral we can write (on interval <a,b>): 
 
 
 
   where F(a) and F(b) are the primitive functions values for limits a and b. 



to calculate definite integrals 
we have first to evaluate 
indefinite integrals... 
 
repetition from previous 
lecture: 
 
 



 
 
 
 
 
 
 
 
 
 

- definite integrals, examples 
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Definite integrals – simple examples: 



Definite integrals – simple examples: 

Example: 
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But what to do in the case of the use of substitution method? 

During the application of substitution we change the integration 
variable – so we should also change the actual limits or solve  
this problem in the end after the back-substitution.  



But what to do in the case of the use of substitution method? 



Definite integral is equal to the area under 
a curve between bounds a and b – so 
called a Riemann sum of right rectangles: 

formally written as: 

Comment to the geometrical meaning: 
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Definite integral is equal to the area under a curve between bounds a and b 
– so called a Riemann sum of right rectangles: 

Comment to the geometrical meaning: 

Examples: 
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Comment to the geometrical meaning: 

Comment: Entering the limits into the primitive function solves the problem 
with the correct signs of the involved (appropriate) areas. 

Definite integral is equal to the area under a curve between bounds a and b 
– so called a Riemann sum of right rectangles: 

Exercise with MATLAB: To show the integration of sin-function, using  
 the trapz() built-in function of Matlab (numerical method for integration). 
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Definite integrals – some properties 
 
- splitting the interval of integration <a,b> 
 

- change of bounds 
 

- identical bounds 
 

- even and odd functions (definite integrals of them) 
 

- so called “mean value theorem” 
 

- integral as a function of its integration bounds 
 
 
 



Definite integrals – some properties (splitting the interval) 
 Definite integrals have one other property for which there is no analog in 
indefinite integrals: if you split the interval of integration into two parts, then 
the integral over the whole is the sum of the integrals over the parts.  
The following theorem says it more precisely: 



Definite integrals – some properties (change of bounds) 

So far we have always assumed that a < b in all definite integrals           
The fundamental theorem suggests that when b < a, we should 
define the integral as: 

Simply: When we change the order of integral bounds, the final integral  
             will change its sign. 

Comment: Integral over the interval with length zero – is equal to zero: 



Definite integrals – some properties (even and odd functions) 
When we have an even function g(x) on a symmetrical interval <-a, a>, 
then it is valid: 
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The result is twice the area from the half of the interval. 



Definite integrals – some properties (even and odd functions) 
When we have an odd function g(x) on a symmetrical interval <-a, a>, 
then it is valid: 
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The result is zero. 



Definite integrals – some properties (mean value theorem) 
First mean value theorem for definite integrals: 
Let f(x) be a continuous function on <a, b>. Then there exists a point c in <a, b>, 
such that it is valid: 

Simply:  The area below the graph f(x) can be approximated by a rectangle  
              with the height f(c) – and for continuous functions there always 
              exists such a point c in <a, b> 
              (... and we do not have to know its exact value). 



Definite integrals – some properties  
      (the definite integral as a function of its integration bounds) 

What will happen when we set for the upper bound not a number, 
but a variable? 

Such expressions are called as integrals as a function of its upper bound 
(in general: function as a function of its integration bounds). 



      The definite integral as a function of its integration bounds. 



      The definite integral as a function of its integration bounds. 

An interesting question arises (?):  

Comment:  For indefinite integrals it is clear that the differentiation 
      of their result is the original function (it is an opposite operation).  
      But this is not the case for definite integrals (because the results 
      of them are numbers=constants);  
      Only for the definite integral as a function of its integration bounds 
      we can write this result. 
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Definite integrals – improper integrals 
The Riemann‘s definition of a definite integral requires the function f(x) to be 
bounded (smaller in absolute value than infinity). 
We call a definite integral as improper, when: 
a) function f(x) becomes unbounded on <a,b>  or 
b) the interval <a,b> becomes unbounded (i.e. a = −∞ and/or b = +∞). 
Both situations can be sometimes solved by means of the solution of a limit case 
(when the solution converges): 

case a): 

Example (case a) ): 

case b): 

Example (case b) ): 



Definite integrals – improper integrals 
case a): 

case b): 



Definite integrals – improper integrals 

Example (case b) ): 
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Example (case a) ): 



Definite integrals – improper integrals 

Example (case b) ) – sometimes a substitution can cause an occurrence      
of an improper integral: 

Comment:  Some integrals do not converge – in such cases they reach 
infinite values (they diverge).  
Example: 
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Definite integrals – applications 

Many definite integrals have applications in mathematics and physics. 
Let us give some of them. 

distance from velocity (1/3) 



distance from velocity (2/3) 

Different way of derivation – by means of geometrical meaning: 



distance from velocity (3/3) 

additional comment: 



Definite integrals – applications 

parametric curves (1/4) 

Next application: 



Definite integrals – applications 

parametric curves (2/4) 



Definite integrals – applications 

parametric curves (3/4) 



Definite integrals – applications 

parametric curves (4/4) 

Example: the unit circle  



Definite integrals – applications 

parametric curves - 
 - length of function (1/3) 



Definite integrals – applications 

parametric curves - 
 - length of function (2/3) 

The length of the graph of a function 

Example: 
We have a linear function f(x) = x and would like to know 
its length on the interval <0,2>: 
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Can we somehow check this result on the graph? 



Definite integrals – applications 

parametric curves - 
 - length of function (3/3) 

The length of the graph of a function 

Example: Find the length of the function f(x) = x2/4 – lnx/2 
on the interval <1,10>: 
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Finally we can solve the integral: 

First of all, we need to express the derivative of this function: 

... and its squared version (plus one): 
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