Mathematics for Biochemistry

$$
\text { LECTURE } 2
$$

Elementary functions, inverse function

Content

- Elementary functions and their properties
- Composition of the functions
- Inverse function

Function

Definition

$$
\mathrm{f}: \mathrm{M} \rightarrow \mathrm{~N}, \forall \mathrm{x} \in \mathrm{M} \exists!\mathrm{y} \in \mathrm{~N}
$$

In words: Let M and N be sets of numbers. The mapping from M to N is called function if for each x from M exists exactly one y from N.

Note to symbolism: $\quad \forall$ - for each, for all
\exists - exist
!-exactly one, one and only one

Basic properties of the functions

$\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}, \forall \mathrm{x} \in \mathrm{M} \exists!\mathrm{y} \in \mathrm{M}$

M - domain of definition, signed $D(f)$ - set of all x for which the function is defined (set where the function has a sense)

Expected question: where/when the function has no sense?
Answer: dividing by zero, even degree roots of negative numbers, logarithm of non-positive numbers...

N - range/image of function, signed $H(f)$ - set of all possible results y

Important: domain of definition has to be the first thing you do before solving anything. It can not be changed in solving process.

$\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}, \forall \mathrm{x} \in \mathrm{M} \exists!\mathrm{y} \in \mathrm{N}$

x - independent variable, origin, co-image, pre-image
y - image (usually signed as $f(x)$, too)

Equality of functions: two functions f and g are equal only if $D(f(x))=D(g(x))$ and $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{D}$

Example

Equal functions

$$
\begin{array}{ll}
\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}^{2}} & \mathrm{~g}(\mathrm{x})=|\mathrm{x}| \\
\mathrm{D}(\mathrm{f})=\mathbb{R} & \mathrm{D}(\mathrm{~g})=\mathbb{R}
\end{array}
$$

$$
f(x)=\frac{(x-3)}{(x-3)(x+3)} \quad g(x)=\frac{1}{(x+3)}
$$

$$
D(f)=R-\{-3,3\}
$$

$$
D(g)=R-\{-3\}
$$

Monotonicity of the functions

- function is called monotonic if and only if is either increasing or decreasing on $D(f)$

Increasing function: $\forall \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{D}(\mathrm{f}) \mid \mathrm{x}_{1}<\mathrm{x}_{2}: \mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{x}_{2}\right)$

Decreasing function: $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{D}(\mathrm{f}) \mid \mathrm{x}_{1}<\mathrm{x}_{2}: \mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right)$

If the function is not monotonic i.e. is not only increasing or decreasing on $D(f)$, the $D(f)$ can be divided into set of intervals on which the function is monotonic or constant

I_{1} - increasing
I_{2} - decreasing
I_{3} - increasing
I_{4} - constant

Injective function, one-to-one function

$$
\mathrm{f}: \mathrm{M} \rightarrow \mathrm{~N}, \forall \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{M} \mid \mathrm{x}_{1} \neq \mathrm{x}_{2} ; \mathrm{f}\left(\mathrm{x}_{1}\right) \neq \mathrm{f}\left(\mathrm{x}_{2}\right)
$$

- close relation with monotonicity
- increasing and decreasing functions are injective
- if the function is not injective, we can try to split the $D(f)$ into set of intervals, where the function will be injective (same process as in case of the intervals of monotonicity)

Extrema

The function f defined on $D(f)$ has global maximum in point x_{0} if $\forall x \in D(f) ; f(x)<f\left(x_{0}\right)$ The function f defined on $D(f)$ has global minimum in point x_{0} if $\forall x \in D(f) ; f(x)>f\left(x_{0}\right)$

The function f defined on $D(f)$ has local maximum in point x_{0} if $\forall x \in A \subset D(f) ; f(x)<f\left(x_{0}\right)$ The function f defined on $D(f)$ has local minimum in point x_{0} if $\forall x \in A \subset D(f) ; f(x)>f\left(x_{0}\right)$

Example

It is said the function has the upper boundary (or it is bounded from top), if there exist the number h such that $h \geq f(x) \forall x \in D(f)$

Supremum of the function f is the least number that is greater or equal of all elements from range $(\mathrm{H}(\mathrm{f})$) of the function f (the lowest of all numbers h).

It is said the function has the lower boundary (or it is bounded from bottom), if there exist the number I such that $1 \leq \mathrm{f}(\mathrm{x}) \forall \mathrm{x} \in \mathrm{D}(\mathrm{f})$

Infimum of the function f is the greatest number that is lower or equal of all elements from range $(\mathrm{H}(\mathrm{f}))$ of the function f (the greatest of all numbers I).

Simply speaking - the composition of two (or more) functions f and g is function $h(x)=f \circ g=f(g(x))$, i.e. function g is the argument of function f.

The notation $f \circ g$ is read as " f circle g " or " g round f " etc.

$$
\text { Generally } \mathrm{f} \circ \mathrm{~g} \neq \mathrm{g} \circ \mathrm{f}
$$

Example

$$
\begin{equation*}
f=x^{2} \text { and } g=x+2 \tag{x}
\end{equation*}
$$

The composition $h(x)=f \circ g=(x+2)^{2}$
The composition $\mathrm{k}(\mathrm{x})=\mathrm{g} \circ \mathrm{f}=\mathrm{x}^{2}+2$
The decomposition of the function will be understand as process of splitting the function composition into single elements

Example

$$
\begin{aligned}
h(x)=\sqrt{\sin (x+5)} \rightarrow h(x) & =\sqrt{p(x)} \\
p(x) & =\sin (q(x)) \\
q(x) & =x+5
\end{aligned}
$$

Even and odd functions

The function is named as even if it satisfies following condition $(\forall x \in D(f))$:

$$
f(x)=f(-x)
$$

consequence - the graph of even function is symmetrical around y axis

The function is named as odd if it satisfies following condition $(\forall \mathrm{x} \in \mathrm{D}(\mathrm{f}))$:

$$
f(x)=-f(-x)
$$

consequence - the graph of even function is symmetrical around origin

The function is named as inverse (signed $f^{-1}(x)$) if it satisfies following condition $(\forall \mathrm{x} \in \mathrm{D}(\mathrm{f}))$:

$$
\mathrm{f}(\mathrm{x}) \circ \mathrm{f}^{-1}(\mathrm{x})=\mathrm{x}
$$

Example

$$
\begin{gathered}
\mathrm{f}(\mathrm{x}) \rightarrow \mathrm{y}=\frac{5 \mathrm{x}-3}{2} \quad \mathrm{D}(\mathrm{f})=\mathcal{R}, \mathrm{H}(\mathrm{f})=\mathcal{R} \quad \mathrm{f}^{-1}(\mathrm{x}) \rightarrow \mathrm{y}=\frac{2 \mathrm{x}+3}{5} \quad \mathrm{D}\left(\mathrm{f}^{-1}\right)=\mathcal{R}, \mathrm{H}\left(\mathrm{f}^{-1}\right)=\mathcal{R} \\
\mathrm{f}(\mathrm{x}) \circ \mathrm{f}^{-1}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{x}))=\frac{5\left(\frac{2 \mathrm{x}+3}{5}\right)-3}{2}=\mathrm{x}
\end{gathered}
$$

Important: The inverse function can be sought only if original function is injection (one-by-one function). If it is not injection, the $\mathrm{D}(\mathrm{f})$ must be divided into intervals where the function f is injection.

Example

$$
f(x) \rightarrow y=x^{2} \quad D(f)=R, H(f)=\langle 0, \infty)
$$

This function is not injection - two different inputs (e.g. $x_{1}=-2$ and $x_{2}=2$) have the same image ($\mathrm{y}_{1}=\mathrm{y}_{2}=4$).

The function f has to be divided into two parts with different $\mathrm{D}(\mathrm{f})$ on which the functions are injection:

$$
\begin{array}{ll}
f_{1}(x) \rightarrow y=x^{2} & D\left(f_{1}\right)=(-\infty, 0), H\left(f_{1}\right)=(0, \infty) \\
f_{2}(x) \rightarrow y=x^{2} & D\left(f_{2}\right)=\langle 0, \infty), H\left(f_{2}\right)=\langle 0, \infty)
\end{array}
$$

Now we are ready to set the inverse functions:

$$
\begin{aligned}
& \mathrm{f}_{1}^{-1}(\mathrm{x}) \rightarrow \mathrm{y}=-\sqrt{\mathrm{x}} \quad \mathrm{D}\left(\mathrm{f}_{1}^{-1}\right)=(0, \infty), \mathrm{H}\left(\mathrm{f}_{1}^{-1}\right)=(-\infty, 0) \\
& \mathrm{f}_{2}^{-1}(\mathrm{x}) \rightarrow \mathrm{y}=\sqrt{\mathrm{x}}
\end{aligned} \mathrm{D}\left(\mathrm{f}_{2}^{-1}\right)=\langle 0, \infty), \mathrm{H}\left(\mathrm{f}_{2}^{-1}\right)=\langle 0, \infty)
$$

Important relationship:
$\mathrm{D}(\mathrm{f})=\mathrm{H}\left(\mathrm{f}^{-1}\right)$
$H(f)=D\left(f^{-1}\right)$

Assume that original function fulfilled the required condition (it is injection). Then the following algorithm can be used to find the inverse function:

1. $\mathrm{D}(\mathrm{f}), \mathrm{D}(\mathrm{f})=\mathrm{H}\left(\mathrm{f}^{-1}\right)$
2. Switch " y " and " x " symbols
3. Rearrange the function to $y=f(x)$ to obtain inverse function
4. $D\left(f^{-1}\right), D\left(f^{-1}\right)=H(f)$

$$
\begin{gathered}
\text { Example } \\
\mathrm{f}(\mathrm{x}) \rightarrow \mathrm{y}=\frac{1}{\mathrm{x}-3}
\end{gathered}
$$

1. $\mathrm{D}(\mathrm{f})=\mathcal{R}-\{3\} \rightarrow \mathrm{H}\left(\mathrm{f}^{-1}\right)=\mathcal{R}-\{3\}$
2. "Switch" $\mathrm{x}=\frac{1}{\mathrm{y}-3}$
3. "Rearrangment" $\mathrm{x}=\frac{1}{\mathrm{y}-3} \Rightarrow \mathrm{y}-3=\frac{1}{\mathrm{x}} \rightarrow \mathrm{y}=\frac{1}{\mathrm{x}}+3=\mathrm{f}^{-1}(\mathrm{x})$
4. $\mathrm{D}\left(\mathrm{f}^{-1}\right)=\mathcal{R}-\{0\} \rightarrow \mathrm{H}(\mathrm{f})=\mathcal{R}-\{0\}$

Periodic function

The function is named as periodic if it satisfies following condition $(\forall x \in D(f))$:

$$
f(x+T)=f(x)
$$

T - period of the function

Graphical representation of the collection of all ordered pairs [$\mathrm{x}, \mathrm{f}(\mathrm{x})$]

Asymptote: line such that the distance between the curve and the line approaches zero as they tend to infinity (the graph of function does not cross it, nor touch it)

Elementary functions

Constant function
$\mathrm{Y}=\mathrm{C} \quad \mathrm{c}$ is the constant, $\mathrm{c} \in \mathcal{R}$
$\mathrm{D}(\mathrm{f})=\mathcal{R}, \mathrm{H}(\mathrm{f})=\mathrm{c}$

- even function
- not injection
- sup $=$ inf $=\mathrm{c}$

$\mathbf{y}=1 \mathbf{K X}+\mathbf{q} \quad$ k, q are the constant, $k, q \in \mathcal{R}$

graph is the straight line " k " - tangent or linear term, controls the slope of line " q " - absolute term, controls position of the line in direction of axis y sign of term " k " controls the orientation of line: " + " for increasing line

"-" for decreasing line
$\mathrm{D}(\mathrm{f})=\mathcal{R}, \mathrm{H}(\mathrm{f})=\mathcal{R}$

- if $\mathrm{q}=0 \rightarrow$ odd function
- injection
- sup, inf, max, min \nexists

Power function

$$
\mathbf{y}=\mathbf{a} \mathbf{X}^{\mathrm{b}}+\mathbf{C} \quad \mathrm{a}, \mathrm{c} \in \mathcal{R}, \mathrm{~b} \in \mathcal{Z} \cup(0,1)
$$

1. If b is positive even integer, the graph is parabola. The "a" term controls the slope of "parabola's legs". Sign of "a" controls orientation of parabola:
if a>0 - "hole" type
if a < 0 - "hill" type
" c " controls position of the line in direction of axis y

$$
\begin{array}{cl}
\mathrm{y}=\mathrm{x}^{2}-2 & \mathrm{D}(\mathrm{f})=\mathcal{R}, \\
\cdot \\
- & \mathrm{H}(\mathrm{f})=\langle\mathrm{c}, \infty), \text { if } \mathrm{a}>0 \\
\mathrm{H}(\mathrm{f})=(-\infty, \mathrm{c}\rangle, \text { if } \mathrm{a}<0
\end{array}
$$

Power function

$\mathbf{y}=\boldsymbol{a} \mathbf{X}^{\mathbf{b}}+\mathbf{C} \quad \mathrm{a}, \mathrm{c} \in \mathcal{R}, \mathrm{b} \in \mathcal{Z} \cup(0,1)$
2. If b is positive odd integer, the graph is "cubic style". The "a" term controls the slope of "legs". Sign of "a" controls orientation of graph: " c " controls position of the line in direction of axis y

Power function

$\mathbf{y}=\boldsymbol{a} \mathbf{X}^{\mathbf{b}}+\mathbf{C} \quad \mathrm{a}, \mathrm{c} \in \mathcal{R}, \mathrm{b} \in \mathcal{Z} \cup(0,1)$
3. If b is negative even integer, the graph is "chimney style"

$$
\begin{aligned}
& \mathrm{D}(\mathrm{f})=\mathcal{R}-\{0\} \\
& \mathrm{H}(\mathrm{f})=(\mathrm{c}, \infty), \text { if } \mathrm{a}>0 \\
& \mathrm{H}(\mathrm{f})=(-\infty, \mathrm{c}), \text { if } \mathrm{a}<0
\end{aligned}
$$

$$
y=-2 \frac{1}{x^{4}}
$$

Power function

$\mathbf{y}=\boldsymbol{a} \mathbf{X}^{\mathbf{b}}+\mathbf{C} \quad$ a, $с \in \mathcal{R}, \mathrm{~b} \in \mathcal{Z} \cup(0,1)$
4. If b is negative odd integer, the graph is hyperbola

Power function

$\mathbf{y}=\mathbf{a x}^{\mathrm{b}}+\mathbf{c} \quad$ a,c $\in \mathcal{R}, b \in \mathcal{Z} \cup(0,1)$
5. If $b \in(0,1)$ "root" type of graph
$D(f)$ depends on b

Polynomial

$y=\sum_{k=0}^{n} a_{k} x^{k}$

The constant, linear quadratic, cubic etc. functions are special case of polynomial
n - degree of polynomial, $\mathrm{n} \in \mathcal{N}$
$\mathrm{D}(\mathrm{f})=\mathcal{R}$
$\mathrm{H}(\mathrm{f})$ depends of n , if n is odd number, $\mathrm{H}(\mathrm{f})=\mathcal{R}$
if n is even there is supremum or infimum and $H(f)=\langle i n f, \infty)$ or $H(f)=(-\infty, \sup \rangle$

Exponential function

$$
\begin{array}{cc}
\mathbf{Y}=\mathbf{a b}^{\mathrm{x}}+\mathbf{C} & \mathrm{a}, \mathrm{c} \in \mathcal{R}, \mathrm{~b} \in \mathcal{R}^{+} \quad \mathrm{D}(\mathrm{f})=\mathcal{R} \\
\text { if } \mathrm{a}>0 & \text { if } \mathrm{a}<0
\end{array}
$$

if $b>1$ function is increasing, if $b \in(0,1)$ function is decreasing
if $b>1$ function is decreasing, if $b \in(0,1)$ function is increasing

The exponential function occurs most frequently as: $\quad y=e^{x}$
where e is Euler constant: $\mathrm{e}=2.7182818284590 . \ldots$.

Logarithm function

$$
\mathrm{y}=\mathrm{b} \cdot \log _{\mathrm{a}}(\mathrm{x})+\mathrm{c} \quad \mathrm{~b}, \mathrm{c} \in \mathcal{R}, \mathrm{a} \in \mathcal{R}^{+}-\{1\} \quad \mathrm{D}(\mathrm{f})=\mathcal{R}^{+}
$$

- inverse to exponential function, term "a" is called base of logarithm

Basic rule: the base involved to result is the number in logarithm:

$$
y=\log _{a}(x) \rightarrow a^{y}=x
$$

- if $a=10$, we write $\log (x)$ instead of $\log _{10}(x)$
- if $\mathrm{a}=\mathrm{e}$ (Euler constant), we write $\ln (\mathrm{x})$ instead of $\log _{\mathrm{e}}(\mathrm{x})$

Important properties:

$\ln a+\ln b=\ln (a \cdot b) \quad a^{\log _{a} x}=x$
$\ln a-\ln b=\ln \left(\frac{a}{b}\right)$

$$
\log _{\mathrm{a}} \mathrm{x}=\frac{1}{\log _{\mathrm{x}} \mathrm{a}}
$$

$\ln a^{b}=b \ln a$

Trigonometric functions

$$
\begin{aligned}
& y=a \cdot \sin (b x+c)+d, y=a \cdot \cos (b x+c)+d \\
& \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathcal{R} \\
& y=a \cdot \tan (b x+c)+d, y=a \cdot \cot (b x+c)+d
\end{aligned}
$$

Periodic functions

$$
T=\frac{2 \pi}{b}
$$

$$
\begin{aligned}
& \mathrm{D}(\mathrm{f})=\mathcal{R}-\left\{(2 \mathrm{k}+1) \frac{\pi}{2}\right\}, \mathrm{k} \in \mathcal{Z} \\
& \mathrm{D}(\mathrm{f})=\mathcal{R}-\{\mathrm{k} \pi\}, \mathrm{k} \in \mathcal{Z}
\end{aligned}
$$

Trigonometric functions

$\sin \theta=\frac{\text { opposite }}{\text { hypotemuse }}$

$$
\csc \theta=\frac{\text { hypotemuse }}{\text { opposite }}=\frac{1}{\sin (\mathrm{x})}
$$

$\cos \theta=\frac{\text { adjacent }}{\text { hypotemuse }}$
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{\sin (\mathrm{x})}{\cos (\mathrm{x})}$

$$
\sec \theta=\frac{\text { hypotemuse }}{\text { adjacent }}=\frac{1}{\cos (\mathrm{x})}
$$

$$
\cot \theta=\frac{\text { adjacent }}{\text { opposite }}=\frac{\cos (\mathrm{x})}{\sin (\mathrm{x})}
$$

Trigonometric functions

Degrees	Radians	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
0°	0	0	1	0	-	1	-
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	1	0	-	1	-	0

Important relations
$\sin ^{2} \mathrm{x}+\cos ^{2} \mathrm{x}=1, \quad 2 \sin \mathrm{x} \cdot \cos \mathrm{x}=\sin 2 \mathrm{x}, \quad \cos 2 \mathrm{x}=\cos ^{2} \mathrm{x}-\sin ^{2} \mathrm{x}$ $\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y$
$\cos (x+y)=\cos x \cos y \mp \sin x \sin y$

Inverse trigonometric (cyclometric) functions
Since none of the trigonometric functions are one-to-one, they are restricted in order to have inverse functions. Therefore the ranges of the inverse functions are proper subsets of the domains of the original functions

$$
y=a \cdot \arcsin (b x)+c, y=a \cdot \arccos (b x)+c
$$

$$
y=a \cdot \arctan (b x)+c, y=a \cdot \operatorname{arccot}(b x)+c
$$

$$
\begin{aligned}
& \mathrm{D}(\mathrm{f})=\langle-1,1\rangle \\
& \mathrm{H}(\mathrm{f})=\left\langle-\frac{\pi}{2}, \frac{\pi}{2}\right\rangle \\
& \mathrm{H}(\mathrm{f})=\langle 0, \pi\rangle
\end{aligned}
$$

$$
\begin{aligned}
& y=a \cdot \sinh (b x)+c, y=a \cdot \cosh (b x)+c \\
& y=a \cdot \tanh (b x)+c, y=a \cdot \operatorname{coth}(b x)+c
\end{aligned}
$$

Combinations of exponential functions:

$$
\begin{aligned}
& y=\sinh (x)=\frac{e^{x}-e^{-x}}{2}, y=\cosh (x)=\frac{e^{x}+e^{-x}}{2} \\
& y=\tanh (x)=\frac{\sinh (x)}{\cosh (x)}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& y=\operatorname{coth}(x)=\frac{\cosh (x)}{\sinh (x)}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}
\end{aligned}
$$

Hyperbolic functions

$$
\mathrm{D}(\mathrm{f})=\mathcal{R}
$$

Inverse hyperbolic functions

$$
\begin{aligned}
& y=a \cdot \arg \sinh (b x)+c, y=a \cdot \arg \cosh (b x)+c \\
& y=a \cdot \arg \tanh (b x)+c, y=a \cdot \arg \operatorname{coth}(b x)+c
\end{aligned}
$$

Special type of logarithm:
$y=\arg \sinh (x)=\ln \left(x+\sqrt{x^{2}+1}\right) \quad D(f)=\mathcal{R}$
$y=\arg \cosh (x)=\ln \left(x+\sqrt{x^{2}-1}\right) \quad D(f)=\langle 1, \infty)$
$y=\arg \tanh (x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$

$$
\mathrm{D}(\mathrm{f})=(-1,1)
$$

$y=\arg \operatorname{coth}(x)=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right) \quad D(f)=\mathcal{R}-\langle-1,1\rangle$

