
LECTURE 5

Mathematics for Biochemistry

Limits, Continuity



Content:

- limit of a function

- methods of limits evaluation

- continuous function

Lecture 5: limits of functions



Limit of a function - introduction

Limit of a function in some point speaks about special properties 

of a function and is very important in mathematical analysis. 

Description (not a real definition):

If f(x) is some function then a limit of function f in point a is L:

is to be read "the limit of f(x) as x approaches a is L”. 

(or in a very simple way "the limit of f(x) in a is  L ")

It means that if we choose values of x which are close but not equal 

to a, then f(x) will be close to the value L; 

moreover, f(x) gets closer and closer to L as x gets closer and 

closer to a (we can also say that f(x) converges to L for x → a).

Comment: Point a can be also Infinity ().



Limit of a function - introduction

Example: If f(x) = x + 3 then

But this is a very simple example and for such situations we really 

do not need the whole concept of limits evaluation in mathematics.

We should inspect more special situations.

Example: If f(x) = sin(x)/x

This is not so a simple example, because when we substitute x=0  
then we get a expression of 0/0 type, which does not exists.

But there is a solution and we will come to it (later on).
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Limit of a function - introduction

Next example: 

Unfortunately, substituting numbers can sometimes suggest 

a wrong answer. 

..."x close to a„ – but how close is close enough? 

Suppose we had taken the function:
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Substitution of some "small values of x" could lead us to believe

that the limit is 1.

Only when we substitute very small values, we realize that the limit

is 0 (zero)!



Limit of a function - introduction



Limit of a function:

Definition: We say that L is the limit of f(x) as x → a, if:

(1) f(x) need not be defined at x = a, but it must be defined for all 
other x in some interval which contains a.

(2) for every e > 0 one can find a d > 0 such that for all x in the 
domain of f(x) one has:



Limit of a function:

Definition: We say that L is the limit of f(x) as x → a, if:

(1) f(x) need not be defined at x = a, but it must be defined for all 
other x in some interval which contains a.

(2) for every e > 0 one can find a d > 0 such that for all x in the 
domain of f(x) one has:

Why the absolute values? The quantity  |x – a| is the distance 

between the points x and a on the number line, and one can 

measure how close x is to a by calculating |x – a|. The inequality     

|x – a| < d says that "the distance between x and a is less than d ," 

or that "x and a are closer than d . "

Parameters d and e are also called as surroundings of points

a and L, respectively.



Limit of a function:

Evaluation of a limit, based on its definition.

Example: ( ) 111x2lim
5x

=+
→

Solution:

We have f(x) = 2x + 1, a = 5 and L = 11, and the question we

must answer is: "how close should x be to 5 if want to be sure that    

f(x) = 2x + 1 differs less than e from  L = 11?"

To figure this out we try to get an idea of how big |f(x) - L| is:

|f(x) - L| = |(2x + 1) - 11| = |2x - 10| = 2|x - 5| = 2|x - a|.

So, if  2|x - a| < e then we have |f(x) - L| < e, i.e.

if |x - a| < 1/2e then  |f(x) - L| < e.

We can therefore choose d = 1/2e. No matter what e > 0 we are given our d will 

also be positive, and if |x - 5| < d then we can guarantee |(2x + 1) - 11| < e. 

That shows that limx→5 (2x + 1) = 11.

This kind of solution is quite cumbersome, so we have to 
introduce some more efficient ways how to evaluate limits.





Methods of limits evaluation:

1. Substitution method

2. Factoring method

3. Conjugate method

4. Division method

5. L'Hospital's Rule

Comment: Rational function f(x) = Pn(x)/Qn(x), where Pn(x) and Qn(x)

are polynomials [Qn(x) is a nonzero polynomial].



Methods of limits evaluation:

1. Substitution method:

Just simply put the value for x into the expression.
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But what to do in following cases?:
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And what will happen when we take the exactly opposite case –

expression of type 1/0?

Exactly the opposite situation (beside the fact that also this is 

undefined expression): The limit of 1/x as x approaches 0 is Infinity.

Specific case:

What will happen when we must solve a limit, where we get 

finally an expressions of type 1/?

In fact 1/ is known to be undefined, because strictly speaking 

Infinity is not a number, it is an idea. But we can approach it.

So - the limit of 1/x as x approaches Infinity is 0.



Next specific case:
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This is a so called indeterminate expression (form)

(these are expressions of type 0/0 or /).

We will come to a general solution method for this kind       

of limits later on.



Methods of limits evaluation:

2. Factoring method:

Factoring – decomposition to factors, e.g.: (x2-1)=(x+1)(x-1)

Example from previous slide:
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This method is mainly suitable for so called rational functions

limits evaluation.

Next example:
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Methods of limits evaluation:

3. Conjugate method:

Also for rational functions – sometime it helps, when we multiply 

the nominator and denominator of the fraction with a conjugate.

Conjugate – in the case of binomials it is formed by negating 

the second term of the binomial (e.g. the conjugate of x+y is x-y).

Example:
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Division of 

coefficient of the 

largest powers

Methods of limits evaluation:

4. Division method:

Valid only for limits of rational functions with x → .



Methods of limits evaluation:

4. Division method:

Valid only for limits of rational functions with x → .

Solution is based on the division of all terms of both polynomials 

(in nominator and denominator) with the highest power of x.

Examples:
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Methods of limits evaluation:

5. L'Hospital's Rule:

Valid for limits of so-called indeterminate expressions (forms)

(expressions of type 0/0 or /).

This rule is using derivatives, so we will return to it later during 

the term (future lectures).



Some special limits

( )
1

0 0 0

sin sin 1 1
lim 1; lim 0; lim 1 ; lim 1 ; lim 1

x x

x

x x x x x

x x e
x e e

x x x x→ → → → →

- 
= = + = + = = 

 

( )
( )( )

1
1

1
0 0

1
lim lim lim 1

1 1 1

1
11 1 1

/ / lim 1 lim
1

1 1

1 1

0

x x x

x x x

t

t t
t

x x

x x x

x
t tt

x e
t tt

→ → →

- -

→ →

     
= = - =     

+ + +     

+ = -
= - =  = + = =

+
+ +→

+ -

Examples

( )2 2 2 2 2

0 0 0 0

1 cos sin1 cos2 1 cos sin 2sin
lim lim lim lim 2

sin sin sin sinx x x x

x xx x x x

x x x x x x x x→ → → →

- -- - +
= = = =

0 0

sin3
sin3 3

lim lim
sin5si 5

3

n5

3

5
5

x x

x
x

x

x
x

xx

x

→ →
= =



Evaluation of limits for expressions:

All basic operations (+, - ,* , /) have a simple position              
in the evaluation of limits:

(limit of an addition of two expressions is equal to the addition 
of these two limits,... etc.)



Left and right limits:

When we let "x approach a" we allow x to be both larger or smaller 

than a, as long as x gets close to a. 

If we explicitly want to study the behaviour of f(x) as x approaches a

through values larger (lower) than a, then we write

a right-limit (or limit from the right-hand side):

and  a left-limit (or limit from the left-hand side):

All four notations are in use (in various text-books).



Relation of the limit of a function to continuity:

The notion of the limit of a function is very closely related              

to the concept of continuity.

Definition: A function f(x) is said to be continuous at a if it is 

both defined at a and its value at a equals the limit of f(x) as 

x approaches a:

In other words: a continuous function is smooth, without any “steps”.

example of a continuous function.



Discontinuous function f(x) is a function, which for certain 

values or between certain values of the variable x does not vary 

continuously as the variable x increases or decreases.

In other words: a discontinuous function can have “steps”.

example of a discontinuous function.

Example: the so called signum or sign function:



For continuous functions it must be valid that the left-limit is 

equal to the right-limit (this is valid for the majority of cases):

Relation of the limit of a function to continuity:

For discontinuous functions this condition is invalid,

the left-limit is not equal to the right-limit:

Example (discontinuous function):



For continuous functions it must be valid that the left-limit is 

equal to the right-limit (this is valid for the majority of cases):

Relation of the limit of a function to continuity:

... but not 

for this one 

(x=6)
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