Mathematics for Biochemistry

LECTURE 5

Limits, Continuity

Lecture 5: limits of functions

Content:

- limit of a function
- methods of limits evaluation
- continuous function

Limit of a function - introduction

Limit of a function in some point speaks about special properties of a function and is very important in mathematical analysis.
Description (not a real definition):
If $f(x)$ is some function then a limit of function f in point a is L :

$$
\lim _{x \rightarrow a} f(x)=L
$$

is to be read "the limit of $f(x)$ as x approaches a is L ". (or in a very simple way "the limit of $f(x)$ in a is L ")

It means that if we choose values of x which are close but not equal to a, then $f(x)$ will be close to the value L;
moreover, $f(x)$ gets closer and closer to L as x gets closer and closer to a (we can also say that $\mathrm{f}(\mathrm{x})$ converges to L for $x \rightarrow a$).

Comment: Point a can be also Infinity ($\pm \infty$).

Limit of a function - introduction

Example: If $f(x)=x+3$ then

$$
\lim _{x \rightarrow 4}(x+3)=7
$$

But this is a very simple example and for such situations we really do not need the whole concept of limits evaluation in mathematics. We should inspect more special situations.

Example: If $f(x)=\sin (x) / x$

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=?
$$

\boldsymbol{x}	$\frac{\sin x}{x}$
1	$0.841471 \ldots$
0.1	$0.998334 \ldots$
0.01	$0.999983 \ldots$

This is not so a simple example, because when we substitute $x=0$ then we get a expression of 0/0 type, which does not exists.

But there is a solution and we will come to it (later on).

Limit of a function - introduction

Next example:

Unfortunately, substituting numbers can sometimes suggest a wrong answer.
..." x close to a_{n} - but how close is close enough?
Suppose we had taken the function:

$$
\lim _{x \rightarrow 0} \frac{101000 x}{100000 x+1}=?
$$

Substitution of some "small values of x " could lead us to believe that the limit is 1 .
Only when we substitute very small values, we realize that the limit is 0 (zero)!

Limit of a function - introduction

$$
\lim _{x \rightarrow 0} \frac{101000 x}{100000 x+1}=0
$$

x	$101000 \mathrm{x} /(100000 \mathrm{x}+1)$
1	1.0100
0.1	1.0099
0.01	1.0090
0.001	1.0000
0.0001	0.9182
0.00001	0.5050
10^{-6}	0.0918
10^{-7}	0.0100
10^{-8}	0.0010
10^{-9}	0.0001

Limit of a function:

Definition: We say that L is the limit of $f(x)$ as $x \rightarrow a$, if:
(1) $f(x)$ need not be defined at $x=a$, but it must be defined for all other x in some interval which contains a.
(2) for every $\varepsilon>0$ one can find a $\delta>0$ such that for all x in the domain of $f(x)$ one has:

$$
|x-a|<\delta \text { implies }|f(x)-L|<\varepsilon
$$

Limit of a function:

Definition: We say that L is the limit of $f(x)$ as $x \rightarrow a$, if:
(1) $f(x)$ need not be defined at $x=a$, but it must be defined for all other x in some interval which contains a.
(2) for every $\varepsilon>0$ one can find a $\delta>0$ such that for all x in the domain of $f(x)$ one has:

$$
|x-a|<\delta \text { implies }|f(x)-L|<\varepsilon .
$$

Why the absolute values? The quantity $|x-a|$ is the distance between the points x and a on the number line, and one can measure how close x is to a by calculating $|x-a|$. The inequality $|x-a|<\delta$ says that "the distance between x and a is less than δ," or that " x and a are closer than δ."
Parameters δ and ε are also called as surroundings of points a and L, respectively.

Limit of a function: $\quad|x-a|<\delta$ implies $|f(x)-L|<\varepsilon$.

Evaluation of a limit, based on its definition.

Example:

$$
\lim _{x \rightarrow 5}(2 x+1)=11
$$

Solution:

We have $f(x)=2 x+1, a=5$ and $L=11$, and the question we must answer is: "how close should x be to 5 if want to be sure that $f(x)=2 x+1$ differs less than ε from $L=11$?"
To figure this out we try to get an idea of how big $|f(x)-L|$ is:
$|f(x)-L|=|(2 x+1)-11|=|2 x-10|=2|x-5|=2|x-a|$.
So, if $2|x-a|<\varepsilon$ then we have $|f(x)-L|<\varepsilon$, i.e.

$$
\text { if }|x-a|<1 / 2 \varepsilon \text { then }|f(x)-L|<\varepsilon .
$$

We can therefore choose $\delta=1 / 2 \varepsilon$. No matter what $\varepsilon>0$ we are given our δ will also be positive, and if $|x-5|<\delta$ then we can guarantee $|(2 x+1)-11|<\varepsilon$. That shows that $\lim _{x \rightarrow 5}(2 x+1)=11$.
This kind of solution is quite cumbersome, so we have to introduce some more efficient ways how to evaluate limits.

Methods of limits evaluation:

1. Substitution method
2. Factoring method
3. Conjugate method
4. Division method
5. L'Hospital's Rule

Comment: Rational function $f(x)=P_{n}(x) / Q_{n}(x)$, where $P_{n}(x)$ and $Q_{n}(x)$ are polynomials $\left[Q_{n}(x)\right.$ is a nonzero polynomial].

$$
\frac{P_{n}(x)}{Q_{m}(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+b_{m-2} x^{m-2}+\ldots+b_{0}}
$$

Methods of limits evaluation:

1. Substitution method:

Just simply put the value for x into the expression.
Simple examples:

$$
\begin{aligned}
& \lim _{x \rightarrow 10} \frac{x}{2}=\frac{10}{2}=5 \\
& \lim _{x \rightarrow-1} \frac{x^{2}+4 x+3}{x}=\frac{1-4+3}{-1}=\frac{0}{-1}=0
\end{aligned}
$$

But what to do in following cases?:

$$
\lim _{x \rightarrow 3} \frac{x+4 x}{x-3}=\frac{3+12}{0}=\frac{15}{0} \quad \lim _{x \rightarrow \infty} \frac{15}{x+3}=\frac{15}{\infty}
$$

Specific case:

What will happen when we must solve a limit, where we get finally an expressions of type $1 / \infty$?

In fact $1 / \infty$ is known to be undefined, because strictly speaking Infinity is not a number, it is an idea. But we can approach it.

\mathbf{x}	$\underline{1}$				
		5			
1	1,00000				
2	0,50000				
4	0,25000				
10	0,10000				
100	0,01000				
1.000	0,00100		5		10
10.000	0,00010				

So - the limit of $1 / x$ as x approaches Infinity is 0 .
And what will happen when we take the exactly opposite case expression of type $1 / 0$?
Exactly the opposite situation (beside the fact that also this is undefined expression): The limit of $1 / x$ as x approaches 0 is Infinity.

Next specific case:

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\frac{1-1}{1-1}=\frac{0}{0}
$$

This is a so called indeterminate expression (form) (these are expressions of type $0 / 0$ or ∞ / ∞).
We will come to a general solution method for this kind of limits later on.

Methods of limits evaluation:

2. Factoring method:

Factoring - decomposition to factors, e.g.: $\left(x^{2}-1\right)=(x+1)(x-1)$

Example from previous slide:

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{x-1}=\lim _{x \rightarrow 1}(x+1)=1+1=2
$$

This method is mainly suitable for so called rational functions limits evaluation.

Next example:

$$
\lim _{x \rightarrow-1} \frac{x^{2}+4 x+3}{x+1}=?
$$

Methods of limits evaluation:

3. Conjugate method:

Also for rational functions - sometime it helps, when we multiply the nominator and denominator of the fraction with a conjugate. Conjugate - in the case of binomials it is formed by negating the second term of the binomial (e.g. the conjugate of $x+y$ is $x-y$).

Example:

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{4-x}= & \lim _{x \rightarrow 4} \frac{(2-\sqrt{x})}{(4-x)} \frac{(2+\sqrt{x})}{(2+\sqrt{x})}=\lim _{x \rightarrow 4} \frac{\left(2^{2}+2 \sqrt{x}-2 \sqrt{x}-x\right)}{(4-x)(2+\sqrt{x})}= \\
& =\lim _{x \rightarrow 4} \frac{(4-x)}{(4-x)(2+\sqrt{x})}=\lim _{x \rightarrow 4} \frac{1}{2+\sqrt{x}}=\frac{1}{2+\sqrt{4}}=\frac{1}{4}
\end{aligned}
$$

Methods of limits evaluation:
4. Division method:

Valid only for limits of rational functions with $\mathrm{x} \rightarrow \infty$.
$\lim _{x \rightarrow \infty} \frac{P_{n}(x)}{Q_{m}(x)}=\lim _{x \rightarrow \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+b_{m-2} x^{m-2}+\ldots+b_{0}}$

1. option $\rightarrow \mathbf{n}>m$

$$
\lim _{x \rightarrow \infty} \frac{P_{n}(x)}{Q_{m}(x)}=\infty
$$

2. option $\rightarrow \mathbf{n}<\mathbf{m}$
$\lim _{x \rightarrow \infty} \frac{P_{n}(x)}{Q_{m}(x)}=0$
3. option $\rightarrow \mathbf{n}=\mathbf{m}$

Methods of limits evaluation:

4. Division method:

Valid only for limits of rational functions with $\mathrm{x} \rightarrow \infty$.
Solution is based on the division of all terms of both polynomials (in nominator and denominator) with the highest power of x .

Examples:

$$
\lim _{x \rightarrow \infty} \frac{3 x+1}{2 x+5}=\lim _{x \rightarrow \infty} \frac{3 x / x+1 / x}{2 x / x+5 / x}=\lim _{x \rightarrow \infty} \frac{3+1 / x}{2+5 / x}=\frac{3+0}{2+0}=\frac{3}{2}
$$

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{x^{3}+3 x}{5 x^{3}+2 x^{2}+8}=\lim _{x \rightarrow \infty} \frac{x^{3} / x^{3}+3 x / x^{3}}{5 x^{3} / x^{3}+2 x^{2} / x^{3}+8 / x^{3}=\lim _{x \rightarrow \infty} \frac{1+3 x^{2}}{5+2\left(x+8 / x^{3}\right.}=\frac{1}{5}} \\
\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{3}+1}=\lim _{x \rightarrow \infty} \frac{x^{2} / x^{3}}{x^{3} / x^{3}+1 / x^{3}}=\lim _{x \rightarrow \infty} \frac{1 / x}{1+1 / x^{3}}=\frac{0}{1+0}=0
\end{gathered}
$$

Methods of limits evaluation:

5. L'Hospital's Rule:

Valid for limits of so-called indeterminate expressions (forms)
(expressions of type $0 / 0$ or ∞ / ∞).
This rule is using derivatives, so we will return to it later during the term (future lectures).

Some special limits

$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 ; \lim _{x \rightarrow \infty} \frac{\sin x}{x}=0 ; \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e ; \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e ; \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$

Examples

$\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x \sin x}=\lim _{x \rightarrow 0} \frac{1-\left(\cos ^{2} x-\sin ^{2} x\right)}{x \sin x}=\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x+\sin ^{2} x}{x \sin x}=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} x}{x \sin x}=\underline{=}$
$\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 5 x}=\lim _{x \rightarrow 0} \frac{3 x \frac{\sin 3 x}{3 x}}{5 x \frac{\sin 5 x}{5 x}}=\frac{3}{\underline{5}}$
$\lim _{x \rightarrow \infty}\left(\frac{x}{x+1}\right)^{x}=\lim _{x \rightarrow \infty}\left(\frac{x+1-1}{x+1}\right)^{x}=\lim _{x \rightarrow \infty}\left(1-\frac{1}{x+1}\right)^{x}=$
$=/-\frac{1}{x+1}=t \Rightarrow \begin{gathered}x+1=-\frac{1}{t} /=\lim _{t \rightarrow 0}(1+t)^{-\frac{1}{t}-1}=\lim _{t \rightarrow 0} \frac{1}{(1+t)(1+t)^{\frac{1}{t}}}=\frac{1}{\underline{e}}+0\end{gathered}$

Evaluation of limits for expressions:

All basic operations (+, - ,* ,/) have a simple position in the evaluation of limits:
(limit of an addition of two expressions is equal to the addition of these two limits,... etc.)

$$
\begin{aligned}
& \lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=A+B \\
& \lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)=A-B \\
& \lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=A \cdot B \\
& \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{A}{B} \quad B \neq 0
\end{aligned}
$$

Left and right limits:

When we let " x approach a " we allow x to be both larger or smaller than a, as long as x gets close to a.

If we explicitly want to study the behaviour of $f(x)$ as x approaches a through values larger (lower) than a, then we write
a right-limit (or limit from the right-hand side):

and a left-limit (or limit from the left-hand side):

All four notations are in use (in various text-books).

Relation of the limit of a function to continuity:

The notion of the limit of a function is very closely related to the concept of continuity.

Definition: A function $f(x)$ is said to be continuous at a if it is both defined at a and its value at a equals the limit of $f(x)$ as x approaches a:

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

In other words: a continuous function is smooth, without any "steps".

example of a continuous function.

Discontinuous function $f(x)$ is a function, which for certain values or between certain values of the variable x does not vary continuously as the variable x increases or decreases. In other words: a discontinuous function can have "steps".

example of a discontinuous function.

Example: the so called signum or sign function:

$$
\operatorname{sgn}(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -1 & \text { if } x<0\end{cases}
$$

Plot of the signum function. The
hollow dots indicate that $\operatorname{sgn}(x)$ is 1 for all $x>0$ and -1 for all $x<0$.

Relation of the limit of a function to continuity:

For continuous functions it must be valid that the left-limit is equal to the right-limit (this is valid for the majority of cases):

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)
$$

For discontinuous functions this condition is invalid, the left-limit is not equal to the right-limit:

$$
\lim _{x \rightarrow a+} f(x) \neq \lim _{x \rightarrow a-} f(x)
$$

Example (discontinuous function):

$$
\lim _{x \rightarrow 0+} \frac{|\sin x|}{\sin x}=1, \quad \text { but } \quad \lim _{x \rightarrow 0-} \frac{|\sin x|}{\sin x}=-1
$$

Relation of the limit of a function to continuity:

For continuous functions it must be valid that the left-limit is equal to the right-limit (this is valid for the majority of cases):

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)
$$

... but not for this one ($\mathrm{x}=6$)

