<u>transformácie polí (ÚBA)</u> (tvorba odvodených polí)

ciele:

- zvýraznenie (separácia) regionálnej a/alebo reziduálnej zložky
 (regionálna zložka – väčšinou hlbšie zdroje)
 (reziduálna zložka – väčšinou plytšie zdroje)
- zvýraznenie prejavov zdrojov v pôvodnom poli

technická realizácia:

- dolno- a hornopriepustné filtre

(low- and high-pass filters)

v <u>priestorovej</u> alebo <u>spektrálnej</u> oblasti

– separácia lokálnych (reziduálnych) anomálií

- analytické pokračovanie nahor/nadol
- výpočet vyšších dervácií (vertikálnych, horizontálnych)
- iné špeciálne transformácie (zdanlivá hustota, konvexnosť/konkávnosť, "hyperbolickosť", atď.)

transformácie polí

numerická realizácia – v priestorovej oblasti: tzv. kĺzajúce konvolučné filtre (okná):

konvolúcia:

$$f * g = \int_{-\infty}^{+\infty} f(\tau)g(x-\tau)d\tau = \int_{-\infty}^{+\infty} f(x-\tau)g(\tau)d\tau = \sum_{i=-m/2}^{+m/2} f_{j-i} g_i$$

Prakticky to potom znamená, že hodnoty poľa násobíme určitými koeficientami a výsledok uložíme pre centrálny bod okna.

transformácie polí

numerická realizácia – v spektrálnej (Fourierovej oblasti) využíva sa pri tom tzv. konvolučná teoréma

konvolúcia:

$$f * g = \int_{-\infty}^{+\infty} f(\tau)g(x-\tau)d\tau = \int_{-\infty}^{+\infty} f(x-\tau)g(\tau)d\tau$$

konvolučná teoréma:

$$\Im\{f * g\} = F(k)G(k) , \quad kde$$

$$F(k) = \Im\{f\} = \int_{-\infty}^{+\infty} f(x)e^{-ikx}dx , \quad G(k) = \Im\{g\} = \int_{-\infty}^{+\infty} g(x)e^{-ikx}dx ,$$

z uvedeného vyplýva, že konvolučné operácie sa dajú veľmi jednoducho realizovať v spektrálnej oblasti – iba násobením spektier

transformácie polí *numerická realizácia – v spektrálnej (Fourierovej oblasti)* využíva sa pri tom tzv. konvolučná teoréma

z uvedeného vyplýva, že konvolučné operácie sa dajú veľmi jednoducho realizovať v spektrálnej oblasti – iba násobením spektier

Praktická realizácia:

- 1. Najprv prevedieme transformované dáta do spektrálnej (Fourierovskej) oblasti pomocou <u>priamej FT</u>,
- 2. V spektrálnej oblasti sa vykoná násobenie spektra so spektrálnou charakteristikou transformácie
- 3. Napokon sa výsledok prevedie naspäť do priestorovej oblasti pomocou <u>inverznej FT.</u>

transformácie polí

numerická realizácia – v spektrálnej (Fourierovej oblasti) využíva sa pri tom tzv. konvolučná teoréma

spektrum funkcie sa násobí spektrálnou charakteristikou operácie

určenie spektrálnych charakteristík transformácií –

 pomocou využitia vlastností Fourierovej transformácie a jej aplikácii na priestorové ekvivalenty transformácií

<u>príklady:</u>

horizontálna derivácia: $(ik)^n$ vertikálna derivácia: $|k|^n$ analytické pokračovanie: $e^{\pm |k|z}$

(kde k je spektrálna premenná alebo vlnové číslo)

transformácie polí numerická realizácia – v spektrálnej (Fourierovej oblasti)

Jedna zo základných vlastností FT – spektrum z derivácie:

$$F\left\{\frac{\partial g}{\partial x}\right\} = \int_{-\infty}^{+\infty} \frac{\partial}{\partial x} \left[g(x)e^{-ikx}\right] dx = \int_{-\infty}^{+\infty} (-ik)g(x)e^{-ikx} dx =$$

$$= (-ik) \int_{-\infty}^{+\infty} g(x) e^{-ikx} dx = (-ik) F\{g(x)\}$$

Výsledkom je spektrum pôvodnej funkcie, násobené s členom (-ik).

separácia lokálnych (reziduálnych) anomálií

separácia lokálnych (reziduálnych) anomálií

numerická realizácia – v priestorovej (Fourierovej oblasti)

- grafické metódy (v priestorovej oblasti)
- prekladanie funkcií (lineárnej alebo jednoduchého polynómu) (pomocou metódy LSQ – najmenších štvorcov)
- využitie "vystreďovacích" vzorcov v priestorovej oblasti (tzv. Griffinov vzorec)
- využitie regionálnej informácie o tvare a hodnotách poľa ÚBA
- využitie tzv. geopotenciálnych modelov (GGM)
- separácia v spektrálnej oblasti zadefinovaním horno-priepustn.
 filtra (Butterworth, Lancsos, Haning, Gaussian, Cosine-rollof, atď.)
 alebo pomocou analytického pokračovania nahor

transformácie polí (ÚBA) v gravimetrii - separácia anomálií

grafická metóda – starší prístup

numerická realizácia prekladania polynómov (lineárnej funkcie) metódou najmenších štvorcov - LSQ (Surfer)

Grid Data -> Gridding Method -> Polynomial Regression ->

-> Simple planar surface

numerická realizácia prekladania polynómov (lineárnej funkcie) metódou najmenších štvorcov - LSQ (Surfer)

Grid Data - Select Data			? X		
Gridding Method Kriging Cokriging Inverse Distance to a Power Triangulation with Linear Interpolation Minimum Curvature Natural Neighbor	Dataset 1 (257 data points) C:\Roman\skola\cvicenia\Spra X: Column A Y: Column B Z: Column C	covanie\starsie\aZS\anizotropia\ Filter Data. View Data Statistics	verzie vššie)		
Nearest Neighbor Local Polynomial	-	Grid Data - Polynomia	I Regression - Op	otions	? ×
Radial Dusis Function Polynomial Regression	>	😑 Original Data Stati	stics	Polynomial Regression P	arameters
Modified Snepard's Method		Original Count	257	Surface definition	Simple plapar surface
Data Metrics		X Minimum	-175	Max X order	Simple planar surface
Moving Average		X Maximum	1385	Max Y order	Bilmear soudic
		Y Minimum	232	Max total order	Quadratic surface
		Y Maximum	1792.4	Polynomial	Cubic surface
		Z Minimum	30.16		User denned polynomial
	Load Settings	Z Maximum	9877.4		
		Detailed statistics	Report		
(i) Polynomial Regression Polynomial Regression interpolates th for trend surface analysis. Polynomia lost in the generated grid. Polynomia your data's Z range.	he underlying large-scale trend I Regression is very fast for any an I Regression is a smoothing interpo < Back	Next > Skip to End >>	Tine data are alues beyond		

Grid Data -> Gridding Method -> Polynomial Regression ->

-> Simple planar surface

numerická realizácia prekladania polynómov (lineárnej funkcie) metódou najmenších štvorcov - LSQ (Grapher)

-

		Labels	Symb	ol Line	Fill	
0.024		Plot	C	lipping	Error Bars	
		Plot Properties				
Fits ? X		Worksheet	t	drift.dat (I	D:\Roman\CG-5\se	
Available Fits		X axis		X Axis 1		
$I \text{ inear } Y = B \times X + A$		Y axis		Y Axis 1		
Uefine Edit Conv Bemove		X column		Column B: time		
		Y column		Column D: SD		
C Display Following Fits		Worksheet	t			
Name Equation Sample		First rov	v	1	Auto	
		Last rov	v	3210	Auto	
		Step ro		1	÷	
q		Data points	s	3209 data	a points	
	C	Fits	I	<click her<="" th=""><th>e to add/edit fits></th></click>	e to add/edit fits>	
Delete Replace Properties		New plot		<click her<="" th=""><th>e to add a new pk</th></click>	e to add a new pk	
C Statistics: Selected fit All fits above Copy to: Clipboard Report						
	•	Auto Updat	e	Apply	Cancel ?	
220	65					
UK Cancel Apply						

Graph -> Line/Scatter -> Properties -> Fits -> Linear

numerická realizácia prekladania polynómov (lineárnej funkcie) metódou najmenších štvorcov - LSQ (napr. Surfer, Grapher)

príklad – plošná mapa rozdelenia hodnôt s výrazným trendom

numerická realizácia prekladania polynómov (lineárnej funkcie) metódou najmenších štvorcov - LSQ (napr. Surfer, Grapher)

príklad – plošná mapa rozdelenia hodnôt s výrazným trendom

numerická realizácia prekladania polynómov (lineárnej funkcie) metódou najmenších štvorcov - LSQ (napr. Surfer, Grapher)

príklad – plošná mapa rozdelenia hodnôt s výrazným trendom

lokalita Wolfsberg (Rakúsko) - mikrogravimetria

porovnanie rokov 2012 a 2016 (kontrolné merania)

2012

lokalita Katarínka - vývoj mapy reziduálnych anomálií

úplné Bougerove anomálie pre red. hustotu 2.4 g.cm⁻³

úplné Bougerove anomálie pre red. hustotu 2.4 g.cm ⁻³ + oprava na múry regionálny trend

reziduálne anomálie pre 2.4 g.cm⁻³

transformácie polí (ÚBA) v gravimetrii - separácia anomálií

Griffinov vystreďovací vzorec

počítajú sa priemery z hodnôt, ležiacich na kružnici s určitým polomerom

(odporúča sa, aby sa rovnal 2 až 3 krát predpokladanej hĺbke anomálnych hmôt, ktoré chceme zvýrazniť)

(používa sa menej –

- vznik umelých prstencov okolo vyseparovaných anomálií,
- tzv. ringing)

transformácie polí (ÚBA) v gravimetrii - separácia anomálií pri prieskumoch s menšou plochou je možné využiť aj regionálne pole ÚBA (z regionálnych pozemných meraní)

transformácie polí (ÚBA) v gravimetrii - separácia anomálií

pri prieskumoch s menšou plochou je možné využiť aj regionálne pole ÚBA, zrátané z tzv. geopotenciálnych modelov (GGM)

- geopotenciálne modely sú založené na aproximácii tiažového potenciálu (aj jeho vyšších derivácií) na základe rozvojov sférických funkcií (s relatívne vysokým počtom členov – až po 2190),
- známe modely: EGM2008, EIGEN-6C4, atď.
- dobré informácie na stránke GFZ v Potsdame: http://icgem.gfz-potsdam.de
- pomocou nich sa spočítajú aproximované hodnoty tiažového zrýchlenia vo výškach vpýpočtových (meracích) bodov a po aplikácií patričných korekcií (najmä masové, ale aj batymetrické) sa spočíta ÚBA.

analytické pokračovanie poľa (nahor, nadol)

analytické pokračovanie poľa (nahor, nadol)

pole sa prepočíta na inú výškovú úroveň

prepočet je možné realizovať iba v priestore
bez významných anomálnych zdrojov
(pri porušení tejto podmienky môže dôjsť ku vzniku vážnych defektov)

riešenie tejto transformačnej úlohy je založené na riešení Laplaceovej diferenciálnej rovnice ($\nabla^2 U = 0$) v kartézsych súradniciach (skriptá: Matem. základy teórie geof. metód, II.diel, str.35 – 37) výsledkom je Fourierova transformácia riešenia = spektrálna charakteristika riešenia = $e^{|k|z}$ (kde k-spektrálna premenná, z-hĺbková úroveň prepočtu)

(predpokladá sa, že namerané pole ÚBA je definované na rovine - obmedz.)

analytické pokračovanie poľa

nahor: smerom od zdrojov nadol: smerom ku zdrojom

modelový príklad:

pri porušení podmienky, kladenej na priestor bez zdrojov poľa dochádza tzv. <u>rozpad poľa</u> (pri priblížení sa k zdrojom)

analytické pokračovanie poľa nadol

pokračovanie nahor (continuation upwards) (5000 m)

pokračovanie nadol (continuation downwards) (5000 m)

príklad: UBA z projektu TRANSALP, cca. 350 x 400 km

analytické pokračovanie poľa nadol

žial pri analytickom prepočte nadol dochádza k rozpadu poľa niekedy skôr, ako je dosiahnutá hĺbková úroveň najplytších dôležitých zdrojov

 spôsobené je to prítomnosťou šumu a chýb v pôvodných dátach alebo výrazným okrajovým efektom (ktoré sa operáciou pokračovania nadol zvýraznia)

liek – tlmenie oscilácií pomocou nízko-pásmového filtra (vyhladzujúceho filtra) tzv. regularizácia

(detaily vo výberovke, 5.ročník)

modelová štúdia využitia regulariz. pokračovania nadol:

hranol s hĺbkou uloženia hornej hrany v 20 m

prepočet na úroveň z = 6 m

modelová štúdia využitia regulariz. pokračovania nadol:

hranol s hĺbkou uloženia hornej hrany v 20 m

prepočet na úroveň z = 10 m

prepočet

na úroveň

modelová štúdia využitia regulariz. pokračovania nadol:

hranol s hĺbkou uloženia hornej hrany v 20 m

modelová štúdia využitia regulariz. pokračovania nadol:

hranol s hĺbkou uloženia hornej hrany v 20 m

prepočet na úroveň z = 20 m (horný okraj telesa)

Teoreticky by sme mali môcť maximálne pokračovať nadol po horný okraj telesa, v praxi sa však dostávame hlbšie (závisí to od viacerých parametrov – aj od tvaru telesa).

syntetický (teoretický) model

Teoreticky by sme mali môcť maximálne pokračovať nadol po horný okraj telesa, v praxi sa však dostávame hlbšie (závisí to od viacerých parametrov – aj od tvaru telesa).

praktický príklad

interpretácia vybranej anomálie od dutiny (krypty), dóm sv. Mikuláša v Trnave

výpočet vyšších derivácií (a ich pomerov)

výpočet vyšších derivácií

- vertikálne derivácie: $V_{zz} = \partial \Delta g_B / \partial z$ a $V_{zzz} = \partial^2 \Delta g_B / \partial z^2$

- horizontálne derivácie: $V_{xz} = \partial \Delta g_B / \partial x$ a $V_{yz} = \partial \Delta g_B / \partial y$ a z nich tvorený horizontálny gradient $HG = \sqrt{(\partial \Delta g_B / \partial x)^2 + (\partial \Delta g_B / \partial y)^2}$
- analytický signál (totálny gradient)

$$AS = \sqrt{\left(\partial \Delta g_{B} / \partial x\right)^{2} + \left(\partial \Delta g_{B} / \partial y\right)^{2} + \left(\partial \Delta g_{B} / \partial z\right)^{2}}$$

(využívaný najmä v magnetometrii)

výpočet vyšších derivácií

výpočet vyšších derivácií

numerická realizácia –

<u>v priestorovej oblasti</u> – kĺzajúce konvolučné filtre (okná):

– FIR-filtre (filtre s konečným počtom prvkov)

napr. pre horiz. deriváciu:

tzv. konečné diferencie: $\partial \Delta g_{\rm B} / \partial x \approx [\Delta g_{\rm B} (+s) - \Delta g_{\rm B} (-s)]/2s$

(s – krok medzi bodmi profilu alebo bunkami gridu)

х

— IIR-filtre (filtre s nekonečným počtom prvkov)

napr. pre vertik. deriváciu:

výpočet vyšších derivácií

numerická realizácia –
v priestorovej oblasti –
kĺzajúce konvolučné filtre (okná):

v prípade práce s gridmi (mapami) sa používajú tzv. kruhovo symetrické konvolučné filtre (nie krížové), hodnoty na jednotl. Kružniciach sa sumujú a násobia koeficientami

odvodené viacerými autormi (V_{zzz}): Elkins, Rosenbach, Baranov, atď.

numerická realizácia – - <u>v priestorovej oblasti</u> – kĺzajúce konvolučné filtre (ok

výpočet vyšších

v prípade práce s gridmi (mar sa používajú tzv. kruhovo symetrické konvolučné filtre (nie krížové)

odvodené viacerými autormi (V_{zzz}): Elkins, Rosenbach, Baranov, atď.

$$\begin{split} & \chi_{itt} = \frac{1}{62s^2} \Big[44\Delta g(0) + 16 \sum_{1}^{4} \Delta g_1(s) - 12 \sum_{1}^{4} \Delta g_1(s) V_2 - 48 \sum_{1}^{8} \Delta g_1(s) V_3 \Big], \\ & \text{XINS II} \\ & \chi_{itt} = \frac{1}{66s^2} \Big[204\Delta g(0) - 48 \sum_{1}^{4} \Delta g_1(s) - 47 \sum_{1}^{4} \Delta g_1(s) V_2 + 32 \sum_{1}^{8} \Delta g_1(s) V_3 \Big], \\ & \text{COLLUM} \\ & \chi_{itt} = \frac{1}{12s^2} \Big[60\Delta g(0) - 64 \sum_{1}^{4} \Delta g_1(s) + 4 \sum_{1}^{4} \Delta g_1(2s) \Big]. \\ & \text{COLLUM} \\ & \chi_{itt} = \frac{1}{24s^2} \Big[60\Delta g(0) - 64 \sum_{1}^{4} \Delta g_1(s) - 32 \sum_{1}^{4} \Delta g_1(s) V_2 \Big] + 8 \sum_{1}^{8} \Delta g_1(s) V_3 \Big], \\ & \text{COLLUM} \\ & \chi_{itt} = \frac{1}{24s^2} \Big[90\Delta g(0) - 72 \sum_{1}^{4} \Delta g_1(s) - 32 \sum_{1}^{4} \Delta g_1(s) V_2 \Big] + 8 \sum_{1}^{8} \Delta g_1(s) V_3 \Big], \\ & \text{COLLUM} \\ & \chi_{itt} = \frac{1}{24s^2} \Big[90\Delta g(0) - 72 \sum_{1}^{4} \Delta g_1(s) - 32 \sum_{1}^{4} \Delta g_1(s) V_2 \Big] + 8 \sum_{1}^{8} \Delta g_1(s) V_3 \Big], \\ & \text{COLLUM} \\ & \chi_{itt} = \frac{1}{24s^2} \Big[90\Delta g(0) - 72 \sum_{1}^{4} \Delta g_1(s) - 32 \sum_{1}^{4} \Delta g_1(s) V_3 \Big] + 8 \sum_{1}^{8} \Delta g_1(s) V_3 \Big], \\ & \text{COLLUM} \\ & \chi_{itt} = \frac{1}{24s^2} \Big[90\Delta g(0) - 72 \sum_{1}^{4} \Delta g_1(s) - 32 \sum_{1}^{4} \Delta g_1(s) V_3 \Big] + 8 \sum_{1}^{8} \Delta g_1(s) V_3 \Big], \\ & \text{COLLUM} \\ & \chi_{itt} = \frac{1}{24s^2} \Big[90\Delta g(0) - 72 \sum_{1}^{4} \Delta g_1(s) - 32 \sum_{1}^{4} \Delta g_1(s) V_3 \Big] + 8 \sum_{1}^{8} \Delta g_1(s) V_3 \Big], \\ & \text{COLLUM} \\ & \chi_{itt} = \frac{1}{24s^2} \Big[90\Delta g(0) - 72 \sum_{1}^{4} \Delta g_1(s) - 32 \sum_{1}^{4} \Delta g_1(s) V_3 \Big] + 8 \sum_{1}^{8} \Delta g_1(s) V_3 \Big], \\ & \text{COLLUM} \\ & \chi_{itt} = \frac{1}{24s^2} \Big[90\Delta g(0) - 72 \sum_{1}^{4} \Delta g_1(s) - 32 \sum_{1}^{4} \Delta g_1(s) V_3 \Big] + 8 \sum_{1}^{8} \Delta g_1(s) V_3 \Big], \\ & \text{COLLUM} \\ & \chi_{itt} = \frac{1}{24s^2} \Big[90\Delta g(0) - 72 \sum_{1}^{4} \Delta g_1(s) - 32 \sum_{1}^{4} \Delta g_1(s) V_3 \Big] + 8 \sum_{1}^{8} \Delta g_1(s) V_3 \Big]$$

výpočet vyšších derivácií numerická realizácia –

- v spektrálnej oblasti – využívajúc konvolučnú teorému

spektrálne charakteristiky:

n-tá horizontálna derivácia: (ik)ⁿ (vyplýva to z vlastnosti FT z derivácie)

n-tá vertikálna derivácia: |k|ⁿ (získa sa výpočtom FT z priamej úlohy v gravimetrii)

(k – spektrálna premenná)

výpočet 1. a 2. vertikálnej derivácie pre syntetický model

z(m)

výpočet 2. vertikálneho gradientu – modelová štúdia

(vypočítaný zle)

výpočet 2. vertikálneho gradientu – modelová štúdia

(vypočítaný dobre)

výpočet vyšších derivácií – horizontálny gradient (V_{xz}) - príklad regionálna mapa ÚBA – oblasť Mŕtveho mora

originálne ÚBA

horizontálny gradient (V_{xz})

výpočet vyšších derivácií – horizontálny gradient (HG) - príklad

lokálne maximá horizontálneho gradientu poukazujú na dôležité hustotné hranice - v našom prípade na ohraničenia dutín a priestorov so sníženou hustotou

mikrogravimetria – Oravský hrad, Veľká terasa

máme tu problém so zvýraznením šumu a chýb – výpočet derivácie je nestabilná operácia

reziduálna Bouguerova anomália nad solným dómom Louisiana, USA (podľa Nettleton, 1979)

jedna z možností "liečby" – Tichonovova regularizácia: použitie špeciálneho vyhladzujúceho filtra

v súčasnosti veľmi populárne - transformácie založené na pomeroch derivácií (najmä na plytšie štruktúry):

- väčšina z nich ja založená na pomeroch derivácií
- derivácie sú vyjadrované v x-, y- a z-ovom smere
- derivácie sú počítané v priestorovej alebo spektrálnej oblasti

zoznam najznámejších transformácií (založených na pomeroch derivácií)

- derivatives of the input field: $\partial f/\partial x$, $\partial f/\partial y$ and $\partial f/\partial z$,
- horizontal gradient: $HG = \sqrt{(\partial f/\partial x)^2 + (\partial f/\partial y)^2}$,
- analytical signal: AS = $\sqrt{(\partial f/\partial x)^2 + (\partial f/\partial y)^2 + (\partial f/\partial z)^2}$,
- tilt derivative: tilt = arctg $\frac{\partial f/\partial z}{HG}$, (Miller and Singh, 1994; Verduzco et al., 2004)
- theta derivative: $\cos(\theta) = \frac{\text{HG}}{\text{AS}}$, (Wijns et al., 2005)

transformácie založené na pomeroch derivácií:

 teoretické krivky (nad kontaktom)

Tieto sú:
a) buď so strmším gradientom ako ÚBA (V_z),
b) alebo tam dosahujú maximum.

- syntetický model (2 telesá nad sebou)

syntetický model (2 telesá nad sebou)

[mGal/m] r 16

- 14

-0

(použitá ČB farebná škála)

nová verzia mapy ÚBA pre územie SR

rozdiely – medzi štandardne počítanou a regularizovanou deriváciou

štandardne počítaná (neregularizovaná) y-ová derivácia

stabilizovaná (regularizovaná) y-ová derivácia

Bezák a kol., 2004: Tektonická mapa Slovenskej republiky

Bezák a kol., 2004: Tektonická mapa Slovenskej republiky

analýza tvarov poľa ÚBA (konvexné/konkávne) – riešenie firmy Proxima R&D (Sv. Jur pri Bratislave)

konvexné tvary – kladné anomálie (p1, p2, p3, ...)

analýza tvarov poľa ÚBA (konvexné/konkávne) – riešenie firmy Proxima R&D (Sv. Jur pri Bratislave)

konkávne tvary – záporné anomálie (m1, m2, m3, ...)

kombinácia výpočtu vyšších derivácií a pokračovania nadol – metóda totálneho normovaného gradientu (tzv. Berezkinova metóda)

- určená na interpretáciu (iba) profilových údajov g(x,0)
- kombinuje prepočítanú horizontálnu $g_x(x,z)$ a vertikálnu $g_z(x,z)$ deriváciu do totálneho gradientu TG(x,z):

$$TG(x,z) = \sqrt{(\partial g/\partial x)^2 + (\partial g/\partial z)^2}$$

- totálny gradient je potom na každej hĺbovej úrovni delený (normovaný) svojou priemernou hodnotou,
- získané pole totálneho normovaného gradientu dosahuje maximum v mieste polohy zdroja anomálie,
- numericky je metóda realizovaná pomocou Fourierových radov, počet zapojených členov radu (N*) je dôležitý parameter metódy – pri jeho <u>optimálnej hodnote</u> je dosiahnuté najväčšie maximum TNG.

metóda totálneho normovaného gradientu (TNG)

-numericky je metóda realizovaná pomocou Fourierových radov, počet zapojených členov radu (N*) je dôležitý parameter metódy.

$$\frac{\partial g}{\partial x} = g_x(x,z) = \frac{\pi}{L} \sum_{n=1}^{N^*} nB_n \cos \frac{\pi nx}{L} e^{\frac{\pi nz}{L}}$$
$$\frac{\partial g}{\partial z} = g_z(x,z) = \frac{\pi}{L} \sum_{n=1}^{N^*} nB_n \sin \frac{\pi nx}{L} e^{\frac{\pi nz}{L}}$$
$$TG(x,z) = \sqrt{g_x^2(x,z) + g_z^2(x,z)}$$

$$G_{N}(x,z) = \frac{\sqrt{g_{x}^{2}(x,z) + g_{z}^{2}(x,z)}}{\frac{1}{M}\sum_{i=1}^{M}\sqrt{g_{x_{i}}^{2}(x,z) + g_{z_{i}}^{2}(x,z)}}$$

pole totálneho normovaného gradientu v reze cez zdroj (horizont. kruhový valec v hĺbke 50 m)

pole totálneho normovaného gradientu v reze cez zdroj (horizont. kruhový valec v hĺbke 50 m)

pole totálneho normovaného gradientu v reze cez zdroj (horizont. kruhový valec v hĺbke 50 m)

hĺbky: 0 až 60 m

