
LECTURE 13

Mathematics for Biochemistry

Functions of more variables 1



Content:

- basic definitions and properties

- partial and total differentiation

- differential operators



Functions of several variables:

In more rigorous mathematical language:



Functions of several

variables:

examples of graphs

for f = f(x,y)



another kind of visualization

- so called coloured image maps 

(there exist also so called contour maps)



another kind of visualization

- so called coloured image maps 

(there exist also so called contour maps)



functions f = f(x,y,z) are often visualized in form of voxel maps



Functions of several variables:

Functions of several variables are used in science for the description

of various fields (physical fields, fields of properties ...).

scalar fields:

e.g. temperature, density, 

concentration, electric charge, ...

t(x,y,z), r(x,y,z), U(x,y,z),...

and also vector fields:

e.g. electrical intensity, fluid velocity,

gravitational acceleration,...
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Functions of several variables:

Many properties are identical with the case of a function with one variable.



Functions of several variables:

Many properties are identical with the case of a function with one variable.

With the continuity is connected also the so called distance  function d:



Functions of several variables:

Some properties are new (compared with a function with one variable).

Symmetry:

A symmetric function is a function f is unchanged when two variables             

xi and xj are interchanged:

where i and j are each one of 1, 2, ..., n.

 

For example:

is symmetric in x, y, z since interchanging any pair of x, y, z leaves f 

unchanged, but is not symmetric in all of x, y, z, t, since interchanging            

t with x or y or z is a different function.



Content:

- basic definitions and properties

- partial and total differentiation

- differential operators



Functions of several variables:

Some properties are new (compared with a function with one variable).

Partial derivatives:

In the case of functions of several variables, we recognize:

a) total derivative (all variables can vary and derivatives with respect to all 

variables are involved)

b) partial derivative (it is a derivative with respect to one of the variables 

with the others held constant)

( ) yxyxyxyx
xx

f
+=++=++




=




20222

Example, function f = x2+xy+y2:
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another tool is given in the next slide:



Partial derivatives:

For the beginner it is helpful to imagine instead of a variable (e.g. y) 

for a moment a constant (e.g. b).



Partial derivatives – few examples:



Functions of several variables:

Some properties are new (compared with a function with one variable).

Total derivative (differential):

In the case of functions of several variables, we recognize:

a) total derivative (all variables can vary and derivatives with respect to all 

variables are involved)

b) partial derivative (it is a derivative with respect to one of the variables 

with the others held constant)

Example, function f = x2+xy+y2:
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Differential operators

There exist few special operations, which use partial derivatives 

and express properties of analyzed functions of several 

variables – so called differential operators: 

- gradient (grad)

- divergence (div)

- rotation (rot)

- Laplacian operator (div grad)

These are used in various descriptions and derivations of basic 

properties of physical fields.



Differential operators:

Gradient – show  the direction and size of the greatest change 

of a scalar field in each point of its domain,

input of the operation: scalar field

output of the operation: vector field

Comment to the notation:

We can write gradient using the so called nabla or del operator :

U U U
gradU

x y z

  
= = + +

  
A i j k

where are elementary vectors, ,i j  k

UgradU =
x y z

  
 = + +

  
i j kwhere



Differential operators:

Gradient – show  the direction and size of the greatest change 

of a scalar field in each point of its domain.

U U U
gradU

x y z

  
= + +
  

i j k

In physical fields, gradient is always pointing in the direction of 

force lines (perpendicular to equipotential lines).



Gradient – example (field of positive electrical charge): (1/3)

Electrical potential U, caused by a positive electrical point charge 

(Q), situated in the origin of the coordinate system (Cartesian) can 

be described by means of the following equation:
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where 0 is the electrical permittivity of vacuum (8.85410-12 F/m).

Equipotential surfaces of this scalar  

field build spherical surfaces around  

the origin of the coordinate system.

Gradient is a vector field, which vectors 

point in each point of the space 

perpendicular to these equipotential 

surfaces.



Gradient – example (field of positive electrical charge): (2/3)
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We will evaluate the gradient of this scalar function:

U U U
gradU

x y z

  
= + +
  

i j k

First we evaluate the partial derivatives of U with respect to x, y and z.
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Gradient – example (field of positive electrical charge): (3/3)
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This is a vector field, pointing in the same direction as the vector

and having the size:
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Differential operators:

There exist few special operations, which use partial derivatives 

and express properties of analyzed functions of several 

variables – so called differential operators: 

- gradient (grad)

- divergence (div)

- rotation (rot)

- Laplacian operator (divgrad)

These are used in various descriptions and derivations of basic 

properties of physical fields.



Differential operators:

Divergence – tells about the sources of a vector field: when the 

result is zero then there is no source of the field in the point.

input of the operation: components of vector field

output of the operation: scalar value field

Comment to the notation:

We can write also divergence using the nabla or del operator  :

yx z
AA A

div
x y z

 
= + +
  

A

where Ax, Ay, Az are the components of vector      .

div = A A where

A

Comment: Divergence depends on the changes of the size of vector 

components and not the change of their direction.

x y z

  
 = + +

  
i j k



Divergence – example (field of electrical charge): (1/2)
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To evaluate the divergence of this field, we need to evaluate the 

following derivatives:











=










=










=

3
0

z3
0

y3
0 4

E , 
4

E  ,
4 r

zQ

r

yQ

r

xQ
Ex

Field of electrical intensity (a vector field) is given by:
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Divergence – example (field of electrical charge): (2/2)

For all three derivatives we get:
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This result is valid for all points with the exception of the coordinate 

system origin, where x = y = z = 0 (source area).



Differential operators:

There exist few special operations, which use partial derivatives 

and express properties of analyzed functions of several 

variables – so called differential operators: 

- gradient (grad)

- divergence (div)

- rotation (rot)

- Laplacian operator (divgrad)

These are used in various descriptions and derivations of basic 

properties of physical fields.



Differential operators:

Rotation – tells about the existence of so called curls of the 

vector field (not about the sources).

input of the operation: components of vector field

output of the operation: vector field

Comment to the notation:

We can write also divergence using the nabla or del operator  :

rotA = A
x y z

  
 = + +

  
i j kwhere

Comment: Rotation does not depend on the changes of the size of vector 

components (this was the role of divergence).
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Rotation – example (field of electrical charge): (1/2)
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For the rotation evaluation we need following derivatives:
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Field of electrical intensity (a vector field) is given by:
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Rotation – example (field of electrical charge): (2/2)

... and for the rotation it is valid:

From the evaluated derivatives it follows:
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This result is valid for all points with the exception of the coordinate 

system origin, where x = y = z = 0 (source area).



Differential operators:

There exist few special operations, which use partial derivatives 

and express properties of analyzed functions of several 

variables – so called differential operators: 

- gradient (grad)

- divergence (div)

- rotation (rot)

- Laplacian operator (divgrad)

These are used in various descriptions and derivations of basic 

properties of physical fields.



Differential operators:

Laplacian operator – in mathematical physics is often used the 

following (combined) differential operator,

input of the operation: scalar field

output of the operation: scalar field

Comment to the notation:

We can write gradient using the so called nabla or del operator :
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Differential operators:

Beside this combined operator (Laplacian), the are valid 

following equations:

( ) 0rot grad U 

( ) 0div rot A

You can try to check it mathematically (make a proof) in a frame 

of a homework.

These equations have important impacts on the properties of some 

physical fields:

- the first one tells that so called potential fields (which intensity can

be expressed by means of the gradient) can not build curls,

- the second one tells us that in a curl there are no sources.
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