Mathematics for Biochemistry

LECTURE 13

Functions of more variables 1



Content:

- basic definitions and properties

- partial and total differentiation

- differential operators



Functions of several variables:

Previously we have studied functions of one variable, y = f(x) in
which x was the independent variable and y was the dependent
variable. We are going to expand the idea of functions to include
functions with more than one independent variable. For example,
consider the functions below:

flx,y)=2x% + y° /
or -

glx,y.z) = 2xe”

Or n=1

n=2
In more rigorous mathematical language:
2 R* SR z: R >R
z(x,y) = ax + by 2(T1, 9, ..., Xp) = GT1 + ATy + - - + ATy

where a and b are real non-zero constants for p non-zero real constants ay, ay...., ap



Functions of several
variables:

examples of graphs

for f = f(x,y)
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sin(0.0001*x2+0.0002*y2)+c0s(0.0001*x2+0.0002*y2)
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z = c0s(0.05*x)*s1n(0.05*y)
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sin(0.0001*x2+0.0002*y2)+c0s(0.0001*x2+0.0002*y2)
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another kind of visualization \ _+
- so called coloured image maps y

(there exist also so called contour maps) z = c0s(0.05%x)*sin(0.05%y)
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another kind of visualization
- so called coloured image maps

(there exist also so called contour maps)
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z = ¢c08(0.05*x)*sin(0.05*y)
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functions f = f(x,y,z) are often visualized in form of voxel maps



Functions of several variables:

Functions of several variables are used in science for the description
of various fields (physical fields, fields of properties ...).

scalar fields:
e.g. temperature, density,
concentration, electric charge, ...

t(x,y,z), p(X,y,z), U(X,y,2),...

and also vector fields:
e.g. electrical intensity, fluid velocity,
gravitational acceleration,...

-A=[A.A.A]
(xy.2)

A
A (% Y.2)
A (xy,2)

A

A
A,
A,




Functions of several variables:
Many properties are identical with the case of a function with one variable.

Limits and Continuity

@ We say that a function f(x, y) has limit L as (x, y) approaches
a point (a, b) and we write

lim flx.v)=1L
I::x;_yjl—!r[a:b]l ( y}

if we can make the values of f(x, y) as close to L as we like by
taking the point (x, y) sufficiently close to the point (a, b), but
not equal to (a, b).

@ We write also f(x,y) — L as (x,y) — (a, b) and

im  f(x,y)=1L
x—a y—b



Functions of several variables:
Many properties are identical with the case of a function with one variable.

Continuity

@ A function f of two variables is called continuous at (a, b) if

im  f(x,y) = f(a,b)

(x.y)—(a.b)

@ Examples: polynomials, rational, trigonometric, exponential,
logarithmic functions are continuous on theirs domain.

With the continuity is connected also the so called distance function d:

d(:{:,y) — d(Il!"'!Iﬂ!yl!"'!yﬂ) — \/(Il _y1}2+"'+($ﬂ- _yﬂ}g



Functions of several variables:
Some properties are new (compared with a function with one variable).

Symmetry:
A symmetric function is a function f is unchanged when two variables
X; and x; are interchanged:

floo a0 )= flooo @y, x4y .0)

where i and j are each one of 1, 2, ..., n.

For example:

f(I!y!E!f‘) — f'E o IE _ yi — EE

IS symmetric in X, y, z since interchanging any pair of x, y, z leaves f
unchanged, but is not symmetric in all of x, y, z, t, since interchanging
t with x or y or z is a different function.



Content:

- basic definitions and properties

- partial and total differentiation

- differential operators



Functions of several variables:
Some properties are new (compared with a function with one variable).

Partial derivatives:

In the case of functions of several variables, we recognize:

a) total derivative (all variables can vary and derivatives with respect to all
variables are involved)

b) partial derivative (it is a derivative with respect to one of the variables
with the others held constant)

fz: [fa 0=f, 5 f or

Example, function f = x2+xy+y?:

of

X+ Xy + 2X+VY+0=2x+
o 5)(( y+y?)=2x+y y
of 0
— = X"+ XY+ Y =0+ X+2y =X+2Y
oy~ oy ¥ )=

another tool is given in the next slide:



Partial derivatives:

For the beginner it is helpful to imagine instead of a variable (e.g. y)
for a moment a constant (e.g. b).

Example 1

: d
Let f(z,y) = y*z?. Calculate a—f (z,u).
:r.

d
Solution: To calculate Ef (2, v), we simply view ¥ as being a fixed number and calculate the ordinary derivative with respect to
x. The first time you do this, it might be easiest to set y = b, where b 1s a eonstant, to remind vou that you should treat y as though

a
it were number rather than a variable. Then, the partial derivative a—f (z, y) is the same as the ordinary derivative of the function
T

g(z) = bz2. Using the rules for ordinary differentiation, we know that

d
Eg z) = 2b%z.

Now, we remember that b = y and substitute y back in to conclude that

af a3
B (z,y) = 2y°z.



Partial derivatives — few examples:
1. If z = f(z,y) = x*y® + 822y + y* + 5z, then the partial derivatives are

(Note: y fixed, = independent variable, z dependent variable)

d

£ = 4%y + 16zy + 5

0z 4,2 2 3 : : -

S_y = Jdx*y° + 8x° + 4y (Note: z fixed, y independent variable, z dependent variable)

2. If z = f(z,y) = (z* + y*)!® + In(xz), then the partial derivatives are

? = Wz (x? +y*)° + ! (Note: We used the chain rule on the first term)
r x
9z o0 92, 30 : : -
5. = 30y~ (z° + y°) (Note: Chain rule again, and second term has no y)
Y

3. If z= f(z,y) = ze™¥, then the partial derivatives are

d
3—; =" 4 zye™ (Note: Product rule (and chain rule in the second term)
dz 5 : :

r e™ (Note: No product rule, but we did need the chain rule)

S‘_y:



Functions of several variables:
Some properties are new (compared with a function with one variable).

Total derivative (differential):

In the case of functions of several variables, we recognize:

a) total derivative (all variables can vary and derivatives with respect to all
variables are involved)

b) partial derivative (it is a derivative with respect to one of the variables
with the others held constant)

For a function z = f(x, v, .. , u) the total differential is defined as
0z 0z 0z
dz=—dx+—_—dy+--+—_—du.
OX oV C'U

Example, function f = x2+xy+y?:

df :g(x2 + Xy + yz)dx+%(x2 + XY + yz)dy =(2x+y)dx+(2y+x)dy



Differential operators

There exist few special operations, which use partial derivatives
and express properties of analyzed functions of several
variables — so called differential operators:

- gradient (grad)
- divergence (div)
- rotation (rot)

- Laplacian operator (div grad)

These are used in various descriptions and derivations of basic
properties of physical fields.



Differential operators:

Gradient — show the direction and size of the greatest change
of a scalar field in each point of its domain,

iInput of the operation: scalar field
output of the operation: vector field

gradU :A:8—Ui+a—uj+6—uk
OX oy 0z

where 1, J, K are elementary vectors

Comment to the notation:
We can write gradient using the so called nabla or del operator V:

0 0 0

= wh V=—Ii+—]J+—Kk
gradUu =VU ere o~ ayJ p



Differential operators:

Gradient — show the direction and size of the greatest change
of a scalar field in each point of its domain.

gradU = U i+aU j+a—Uk
OX oy 0z

Gradients (in blue) point 10 direction
levels are increasing the fastest.

In physical fields, gradient is always pointing in the direction of
force lines (perpendicular to equipotential lines).



Gradient — example (field of positive electrical charge):  (1/3)

Electrical potential U, caused by a positive electrical point charge
(Q), situated in the origin of the coordinate system (Cartesian) can
be described by means of the following equation:

,_1Q_1 Q

47'580 r 47580 JXZ + y2 + 22

where g, is the electrical permittivity of vacuum (8.854-1012 F/m).

Equipotential surfaces of this scalar

field build spherical surfaces around

the origin of the coordinate system. -
Gradient is a vector field, which vectors

point in each point of the space

perpendicular to these equipotential

surfaces.



Gradient — example (field of positive electrical charge):  (2/3)

gradU :aU i+aU j+aU K
OX oy 0z

We will evaluate the gradient of this scalar function:
y. 1 Q_ 1 Q

47'[80 I 47'[80 \/Xz 4 y2 4+ 22

because the field of electrical intensity (vector) is given: E = —gradU

First we evaluate the partial derivatives of U with respect to x, y and z.

. 3
M_Q Ifresyrig]e =2 (_Ej [yt rx -
OX  4rg, OX drey 2

/ A

e e
> S 4ge B
EOK[X2+y2+ZZ:|2) &,

Partial derivatives%U and %Y are evaluated in a very similar way.
y 0z



Gradient — example (field of positive electrical charge):  (3/3)

ou__ Q (Xj ou__ Q KYJ ou__Q (Zj
ox  Adme,\rd) oy Ame,\rd) oz Amgy\r’

E-—_gradU = Q (Xi+yj+ikJ— Q (Xl+yj+2kj_ Q r

e, \r°  r’7 o dre, r’ drg, 1’

This is a vector field, pointing in the same direction as the vector 1
and having the size:

L

dre, r°  Amg, 1’




Differential operators:

There exist few special operations, which use partial derivatives
and express properties of analyzed functions of several
variables — so called differential operators:

- gradient (grad)
- divergence (div)
- rotation (rot)

- Laplacian operator (divgrad)

These are used in various descriptions and derivations of basic
properties of physical fields.



Differential operators:

Divergence — tells about the sources of a vector field: when the
result is zero then there is no source of the field in the point.
iInput of the operation: components of vector field

output of the operation: scalar value field S e

0
divAz&A&+ Ay+aAZ W AT
oX oy oz LR AL
where A, A,, A, are the components of vector A

Comment: Divergence depends on the changes of the size of vector
components and not the change of their direction.

Comment to the notation:
We can write also divergence using the nabla or del operator V:

d'VA:VA where V=£|+£J+ik
ox oy 0z



Divergence — example (field of electrical charge): (1/2)
Field of electrical intensity (a vector field) is given by:

E = —gradu = 2 (X'”Jg”kj: E,i+E,j+EkK

A7, r

-3} o 2 e
" dmey\r Y Ame, \ 1’ 4reg \ 1’

To evaluate the divergence of this field, we need to evaluate the
following derivatives:

ok, Q 0 X Q O X Q 3/2
-0 2(x). ]2 2 fesynea] )
OX  4mey ox\r®) 4me, OX [X ry +Z]B " 4ng, OX

3 2 2 2 |F5/2 B
47[80([)( +y +Z T Zj[x +y 41z } zxj_
47580 ([X +y +Z T X2+y2+22T5/2)




Divergence — example (field of electrical charge): (2/2)

For all three derivatives we get:

a;xx Ams, ([x +y2 4z T —3x [x2+y2+22r3/2)

8(§/y 4%0([)( ry +ZT —3y2[X2+y2+22T5/2)

ok, _ Q ([x2+y2+z2 3/2—322[x2+y2+22 5/2)

« , 5y OB, _ (3[x2+y2+22 3/2_3(X2+y2+221X2+y2+22T5/2j:

:4Q (3[x2+y2+22 3/2—3[X2+y2+22 3/2j=o

This result is valid for all points with the exception of the coordinate
system origin, where x =y =z = 0 (source area).



Differential operators:

There exist few special operations, which use partial derivatives
and express properties of analyzed functions of several
variables — so called differential operators:

- gradient (grad)
- divergence (div)
- rotation (rot)

- Laplacian operator (divgrad)

These are used in various descriptions and derivations of basic
properties of physical fields.



Differential operators:
Rotation — tells about the existence of so called curls of the

vector field (not about the sources).
iInput of the operation: components of vector field

output of the operation: vector field

I ] K

oAl 2 0 :i(aAz_@ijij(@Ax_aAszrk(@Ay_aA&j
OX oy 0z oy 0z 0z  OX oXx oYy
A A A

Comment: Rotation does not depend on the changes of the size of vector
components (this was the role of divergence).

Comment to the notation:
We can write also divergence using the nabla or del operator V:

rotA=VxA where V=£i+£j+£k
ox oy oz



Rotation — example (field of electrical charge): (1/2)
Field of electrical intensity (a vector field) is given by:

E = —gradu = —> (Xl+yi+2kj:Exi+Eyj+Ezk
Are, r

-5 e (-2
* dmgy\r Y dme \r? )7 Amey \r?

For the rotation evaluation we need following derivatives:

@y 472'50 @y I’3 472-80 @y |:X2 n y2 n Zz]g 472'50 8y

_ 2Q ((_23j[xz+y2+zz:|2 Zyj:_ijQ [[X2+y2+22]2j
( )

Are,

e,
OE, _ Q 0 y :_BZYQ [X2+y2+22]‘g
0z 4re, 0Z W21 \2 4 72 g Arg,
Xy 2



Rotation — example (field of electrical charge):

From the evaluated derivatives it follows:

In a similar way we can show:

— Y0
oy 0z
o, OE, 0
0z  OX

ok

, OE

... and for the rotation it is valid:

rotk =

1] K
0 0 O
ox oy 0z
E. E, E

X

y z

|

0E, OE,

oy oz

j+

J

|

X —0
oX oYy

OE, OE,

0Z

OX

)

0E, GE,

OX

oy

(2/2)

F

This result is valid for all points with the exception of the coordinate
system origin, where x =y =z = 0 (source area).



Differential operators:

There exist few special operations, which use partial derivatives
and express properties of analyzed functions of several
variables — so called differential operators:

- gradient (grad)
- divergence (div)
- rotation (rot)

- Laplacian operator (divgrad)

These are used in various descriptions and derivations of basic
properties of physical fields.



Differential operators:

Laplacian operator — in mathematical physics is often used the
following (combined) differential operator,

Input of the operation: scalar field

output of the operation: scalar field

div(gradU )= o(0U /ox) N o(6U /oy) N o(oU /oz)

OX oy 0z
2 2 2
div(gradu )= 7Y L 7Y L O
OX oy oz

Comment to the notation:
We can write gradient using the so called nabla or del operator V:

div(gradU )=V -(VU )=V°U =AU



Differential operators:

Beside this combined operator (Laplacian), the are valid
following equations:

rot(grad U )=0
diV(rOt A) =0

These equations have important impacts on the properties of some

physical fields:

- the first one tells that so called potential fields (which intensity can
be expressed by means of the gradient) can not build curls,

- the second one tells us that in a curl there are no sources.

You can try to check it mathematically (make a proof) in a frame
of a homework.
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