Mathematics for Biochemistry

LECTURE 13

Functions of more variables 1

Content:

- basic definitions and properties
- partial and total differentiation
- differential operators

Functions of several variables:

Previously we have studied functions of one variable, $y=f(x)$ in which x was the independent variable and y was the dependent variable. We are going to expand the idea of functions to include functions with more than one independent variable. For example, consider the functions below:

$$
\begin{aligned}
& f(x, y)=2 x^{2}+y^{2} \\
& \text { or } \\
& g(x, y, z)=2 x e^{y z} \\
& \text { or } \\
& h\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2 x_{1}-x_{2}+4 x_{3}+x_{4}
\end{aligned}
$$

In more rigorous mathematical language:
$z: \mathbb{R}^{2} \rightarrow \mathbb{R}$
$z(x, y)=a x+b y$
where a and b are real non-zero constants

$$
\begin{aligned}
& z: \mathbb{R}^{p} \rightarrow \mathbb{R} \\
& z\left(x_{1}, x_{2}, \ldots, x_{p}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{p} x_{p}
\end{aligned}
$$

$$
\text { for } p \text { non-zero real constants } a_{1}, a_{2}, \ldots, a_{p}
$$

Functions of several

 variables:
examples of graphs for $f=f(x, y)$

$\mathrm{z}=\cos \left(0.05^{*} \mathrm{x}\right) * \sin \left(0.05^{*} \mathrm{y}\right)$

another kind of visualization

- so called coloured image maps (there exist also so called contour maps)

$\sin \left(0.0001 * x^{2}+0.0002 * y^{2}\right)+\cos \left(0.0001 * x^{2}+0.0002 * y^{2}\right)$

$$
\mathrm{z}=\sin (0.01 * \mathrm{x}+0.02 * \mathrm{y}) * \cos (0.01 * \mathrm{x}+0.02 * \mathrm{y})
$$

$$
\mathrm{z}=\cos (0.05 * \mathrm{x}) * \sin (0.05 * \mathrm{y})
$$

Depth (m)

functions $f=f(x, y, z)$ are often visualized in form of voxel maps

Functions of several variables:

Functions of several variables are used in science for the description of various fields (physical fields, fields of properties ...). scalar fields:
e.g. temperature, density,
concentration, electric charge, ... $t(x, y, z), \rho(x, y, z), U(x, y, z), \ldots$
and also vector fields:
e.g. electrical intensity, fluid velocity,
 gravitational acceleration,...

$$
\begin{aligned}
& \vec{A}=\mathbf{A}=\left[A_{x}, A_{y}, A_{z}\right] \\
& A_{x}=A_{x}(x, y, z) \\
& A_{y}=A_{y}(x, y, z) \\
& A_{z}=A_{z}(x, y, z)
\end{aligned}
$$

Functions of several variables:

Many properties are identical with the case of a function with one variable.

Limits and Continuity

- We say that a function $f(x, y)$ has limit L as (x, y) approaches a point (a, b) and we write

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

if we can make the values of $f(x, y)$ as close to L as we like by taking the point (x, y) sufficiently close to the point (a, b), but not equal to (a, b).

- We write also $f(x, y) \rightarrow L$ as $(x, y) \rightarrow(a, b)$ and

$$
\lim _{x \rightarrow a, y \rightarrow b} f(x, y)=L
$$

Functions of several variables:

Many properties are identical with the case of a function with one variable.

Continuity

- A function f of two variables is called continuous at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

- Examples: polynomials, rational, trigonometric, exponential, logarithmic functions are continuous on theirs domain.

With the continuity is connected also the so called distance function d :

$$
d(\boldsymbol{x}, \boldsymbol{y})=d\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}
$$

Functions of several variables:

Some properties are new (compared with a function with one variable).

Symmetry:

A symmetric function is a function f is unchanged when two variables x_{i} and x_{j} are interchanged:

$$
f\left(\ldots, x_{i}, \ldots, x_{j}, \ldots\right)=f\left(\ldots, x_{j}, \ldots, x_{i}, \ldots\right)
$$

where i and j are each one of $1,2, \ldots, n$.
For example:

$$
f(x, y, z, t)=t^{2}-x^{2}-y^{2}-z^{2}
$$

is symmetric in x, y, z since interchanging any pair of x, y, z leaves f unchanged, but is not symmetric in all of x, y, z, t, since interchanging t with x or y or z is a different function.

Content:

- basic definitions and properties
- partial and total differentiation
- differential operators

Functions of several variables:

Some properties are new (compared with a function with one variable).

Partial derivatives:

In the case of functions of several variables, we recognize:
a) total derivative (all variables can vary and derivatives with respect to all variables are involved)
b) partial derivative (it is a derivative with respect to one of the variables with the others held constant)

$$
f_{x}^{\prime}, f_{x}, \partial_{x} f, \frac{\partial}{\partial x} f, \text { or } \frac{\partial f}{\partial x}
$$

Example, function $f=x^{2}+x y+y^{2}$:
$\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(x^{2}+x y+y^{2}\right)=2 x+y+0=2 x+y$
$\partial f=\frac{\partial}{\partial y}\left(x^{2}+x y+y^{2}\right)=0+x+2 y=x+2 y$

Partial derivatives:

For the beginner it is helpful to imagine instead of a variable (e.g. y) for a moment a constant (e.g. b).

Example 1

Let $f(x, y)=y^{3} x^{2}$. Calculate $\frac{\partial f}{\partial x}(x, y)$.
Solution: To calculate $\frac{\partial f}{\partial x}(x, y)$, we simply view y as being a fixed number and calculate the ordinary derivative with respect to x. The first time you do this, it might be easiest to set $y=b$, where b is a constant, to remind you that you should treat y as though it were number rather than a variable. Then, the partial derivative $\frac{\partial f}{\partial x}(x, y)$ is the same as the ordinary derivative of the function $g(x)=b^{3} x^{2}$. Using the rules for ordinary differentiation, we know that

$$
\frac{\mathrm{d} g}{\mathrm{~d} x}(x)=2 b^{3} x
$$

Now, we remember that $b=y$ and substitute y back in to conclude that

$$
\frac{\partial f}{\partial x}(x, y)=2 y^{3} x
$$

Partial derivatives - few examples:

1. If $z=f(x, y)=x^{4} y^{3}+8 x^{2} y+y^{4}+5 x$, then the partial derivatives are

$$
\begin{array}{ll}
\frac{\partial z}{\partial x}=4 x^{3} y^{3}+16 x y+5 & (\text { Note: } y \text { fixed, } x \text { independent variable, } z \text { dependent variable) } \\
\frac{\partial z}{\partial y}=3 x^{4} y^{2}+8 x^{2}+4 y^{3} & (\text { Note: } x \text { fixed, } y \text { independent variable, } z \text { dependent variable) }
\end{array}
$$

2. If $z=f(x, y)=\left(x^{2}+y^{3}\right)^{10}+\ln (x)$, then the partial derivatives are

$$
\begin{gathered}
\frac{\partial z}{\partial x}=20 x\left(x^{2}+y^{3}\right)^{9}+\frac{1}{x} \quad \text { (Note: We used the chain rule on the first term) } \\
\left.\frac{\partial z}{\partial y}=30 y^{2}\left(x^{2}+y^{3}\right)^{9} \quad \text { (Note: Chain rule again, and second term has no } y\right)
\end{gathered}
$$

3. If $z=f(x, y)=x e^{x y}$, then the partial derivatives are

$$
\begin{array}{ll}
\frac{\partial z}{\partial x}=e^{x y}+x y e^{x y} & \text { (Note: Product rule (and chain rule in the second term) } \\
\frac{\partial z}{\partial y}=x^{2} e^{x y} & \text { (Note: No product rule, but we did need the chain rule) }
\end{array}
$$

Functions of several variables:

Some properties are new (compared with a function with one variable).
Total derivative (differential):
In the case of functions of several variables, we recognize:
a) total derivative (all variables can vary and derivatives with respect to all variables are involved)
b) partial derivative (it is a derivative with respect to one of the variables with the others held constant)

For a function $\mathbf{z}=f(x, y, . ., u)$ the total differential is defined as

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y+\cdots+\frac{\partial z}{\partial u} d u .
$$

Example, function $f=x^{2}+x y+y^{2}$:
$d f=\frac{\partial}{\partial x}\left(x^{2}+x y+y^{2}\right) d x+\frac{\partial}{\partial y}\left(x^{2}+x y+y^{2}\right) d y=(2 x+y) d x+(2 y+x) d y$

Differential operators

There exist few special operations, which use partial derivatives and express properties of analyzed functions of several variables - so called differential operators:

- gradient (grad)
- divergence (div)
- rotation (rot)
- Laplacian operator (div grad)

These are used in various descriptions and derivations of basic properties of physical fields.

Differential operators:

Gradient - show the direction and size of the greatest change of a scalar field in each point of its domain, input of the operation: scalar field output of the operation: vector field

$$
\operatorname{grad} U=\mathbf{A}=\frac{\partial U}{\partial x} \mathbf{i}+\frac{\partial U}{\partial y} \mathbf{j}+\frac{\partial U}{\partial z} \mathbf{k}
$$

where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are elementary vectors

Comment to the notation:
We can write gradient using the so called nabla or del operator ∇ :

$$
\operatorname{gradU}=\nabla U \quad \text { where } \quad \nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}
$$

Differential operators:

Gradient - show the direction and size of the greatest change of a scalar field in each point of its domain.

In physical fields, gradient is always pointing in the direction of force lines (perpendicular to equipotential lines).

Gradient - example (field of positive electrical charge):
Electrical potential U, caused by a positive electrical point charge (Q), situated in the origin of the coordinate system (Cartesian) can be described by means of the following equation:

$$
U=\frac{1}{4 \pi \varepsilon_{0}} \quad \begin{gathered}
r
\end{gathered}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

where ε_{0} is the electrical permittivity of vacuum $\left(8.854 \cdot 10^{-12} \mathrm{~F} / \mathrm{m}\right)$.
Equipotential surfaces of this scalar field build spherical surfaces around the origin of the coordinate system. Gradient is a vector field, which vectors point in each point of the space perpendicular to these equipotential surfaces.

Gradient - example (field of positive electrical charge):

We will evaluate the gradient of this scalar function:

$$
\operatorname{grad} U=\frac{\partial U}{\partial x} \mathbf{i}+\frac{\partial U}{\partial y} \mathbf{j}+\frac{\partial U}{\partial z} \mathbf{k}
$$

$U=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{\sqrt{x^{2}+y^{2}+z^{2}}}$
because the field of electrical intensity (vector) is given: $\vec{E}=-\operatorname{gradU}$
First we evaluate the partial derivatives of U with respect to x, y and z.

$$
\begin{aligned}
\frac{\partial U}{\partial x} & =\frac{Q}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial x}\left(\left[x^{2}+y^{2}+z^{2}\right]^{-\frac{1}{2}}\right)=\frac{Q}{4 \pi \varepsilon_{0}}\left(-\frac{1}{2}\right)\left(\left[x^{2}+y^{2}+z^{2}\right]^{-\frac{3}{2}} 2 x\right)= \\
& =-\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{x}{\left[x^{2}+y^{2}+z^{2}\right]^{\frac{3}{2}}}\right)=-\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{x}{r^{3}}\right)
\end{aligned}
$$

Partial derivatives $\frac{\partial U}{\partial y}$ and $\frac{\partial U}{\partial z}$ are evaluated in a very similar way.

Gradient - example (field of positive electrical charge):

$$
\frac{\partial U}{\partial x}=-\frac{Q}{4 \pi \varepsilon_{0}}\binom{x}{r^{3}}, \quad \frac{\partial U}{\partial y}=-\frac{Q}{4 \pi \varepsilon_{0}}\binom{y}{r^{3}}, \quad \frac{\partial U}{\partial z}=-\frac{Q}{4 \pi \varepsilon_{0}}\binom{z}{r^{3}}
$$

$$
\mathbf{E}=-\operatorname{grad} U=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{x}{r^{3}} \mathbf{i}+\frac{y}{r^{3}} \mathbf{j}+\frac{z}{r^{3}} \mathbf{k}\right)=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{r^{3}}\right)=\frac{Q}{4 \pi \varepsilon_{0}} \frac{\mathbf{r}}{r^{3}}
$$

This is a vector field, pointing in the same direction as the vector \vec{r} and having the size:

$$
|\mathbf{E}|=\frac{Q}{4 \pi \varepsilon_{0}} \frac{r}{r^{3}}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}}
$$

Differential operators:

There exist few special operations, which use partial derivatives and express properties of analyzed functions of several variables - so called differential operators:

- gradient (grad)
- divergence (div)
- rotation (rot)
- Laplacian operator (divgrad)

These are used in various descriptions and derivations of basic properties of physical fields.

Differential operators:

Divergence - tells about the sources of a vector field: when the result is zero then there is no source of the field in the point. input of the operation: components of vector field output of the operation: scalar value field

$$
\operatorname{div} \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}
$$

where A_{x}, A_{y}, A_{z} are the components of vector \mathbf{A}.
Comment: Divergence depends on the changes of the size of vector components and not the change of their direction.

Comment to the notation:
We can write also divergence using the nabla or del operator ∇ :

$$
\operatorname{div} \mathbf{A}=\nabla \cdot \mathbf{A} \quad \text { where } \quad \nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}
$$

Divergence - example (field of electrical charge):
Field of electrical intensity (a vector field) is given by:

$$
\begin{aligned}
& \mathbf{E}=-\operatorname{grad} U=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{r^{3}}\right)=E_{x} \mathbf{i}+E_{y} \mathbf{j}+E_{z} \mathbf{k} \\
& E_{x}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{x}{r^{3}}\right), \mathrm{E}_{\mathrm{y}}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{y}{r^{3}}\right), \mathrm{E}_{\mathrm{z}}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{z}{r^{3}}\right)
\end{aligned}
$$

To evaluate the divergence of this field, we need to evaluate the following derivatives:

$$
\begin{aligned}
\frac{\partial \mathrm{E}_{\mathrm{x}}}{\partial \mathrm{x}} & =\frac{Q}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial \mathrm{x}}\left(\frac{x}{r^{3}}\right)=\frac{Q}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial \mathrm{x}}\left(\begin{array}{c}
x \\
\\
\end{array}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\left[x^{2}+y^{2}+z^{2}\right]^{22}+z^{2}\right]^{-3 / 2}+x\binom{-3}{2}\left[x^{2}+y^{2}+z^{2}\right]^{-5 / 2} 2 x\right)= \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{\partial \mathrm{x}}{}\left(x\left[x^{2}+y^{2}+z^{2}\right]^{-32}\right)= \\
& \left.\left(x^{2}+y^{2}+z^{2}\right]^{-3 / 2}-3 x^{2}\left[x^{2}+y^{2}+z^{2}\right]^{-52}\right)
\end{aligned}
$$

Divergence - example (field of electrical charge):
For all three derivatives we get:

$$
\begin{gathered}
\begin{aligned}
& \partial E_{x}=\frac{Q}{\partial x}\left(\left[x^{2}+y^{2}+z^{2}\right]^{-32}-3 x^{2}\left[x^{2}+y^{2}+z^{2}\right]^{-52}\right) \\
& \frac{\partial E_{y}}{\partial y}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\left[x^{2}+y^{2}+z^{2}\right]^{-32}-3 y^{2}\left[x^{2}+y^{2}+z^{2}\right]^{-52}\right) \\
& \frac{\partial E_{z}}{\partial z}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\left[x^{2}+y^{2}+z^{2}\right]^{-32}-3 z^{2}\left[x^{2}+y^{2}+z^{2}\right]^{-52}\right) \\
& \partial E_{x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}=\frac{Q}{\partial \pi \varepsilon_{0}}\left(3\left[x^{2}+y^{2}+z^{2}\right]^{-32}-3\left(x^{2}+y^{2}+z^{2}\right)\left[x^{2}+y^{2}+z^{2}\right]^{-52}\right)= \\
&=\frac{Q}{4 \pi \varepsilon_{0}}\left(3\left[x^{2}+y^{2}+z^{2}\right]^{-32}-3\left[x^{2}+y^{2}+z^{2}\right]^{-32}\right)=0
\end{aligned}
\end{gathered}
$$

This result is valid for all points with the exception of the coordinate system origin, where $x=y=z=0$ (source area).

Differential operators:

There exist few special operations, which use partial derivatives and express properties of analyzed functions of several variables - so called differential operators:

- gradient (grad)
- divergence (div)
- rotation (rot)
- Laplacian operator (divgrad)

These are used in various descriptions and derivations of basic properties of physical fields.

Differential operators:

Rotation - tells about the existence of so called curls of the vector field (not about the sources). input of the operation: components of vector field output of the operation: vector field

$$
\operatorname{rot} \mathbf{A}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}
\end{array}\right|=\mathbf{i}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\mathbf{j}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\mathbf{k}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)
$$

Comment: Rotation does not depend on the changes of the size of vector components (this was the role of divergence).

Comment to the notation:
We can write also divergence using the nabla or del operator ∇ :

$$
\operatorname{rot} \vec{A}=\nabla \times \mathbf{A} \quad \text { where } \quad \nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}
$$

Rotation - example (field of electrical charge):
Field of electrical intensity (a vector field) is given by:

$$
\begin{aligned}
& \mathbf{E}=-\operatorname{grad} U=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{r^{3}}\right)=E_{x} \mathbf{i}+E_{y} \mathbf{j}+E_{z} \mathbf{k} \\
& E_{x}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{x}{r^{3}}\right), \mathrm{E}_{\mathrm{y}}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{y}{r^{3}}\right), \mathrm{E}_{\mathrm{z}}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{z}{r^{3}}\right)
\end{aligned}
$$

For the rotation evaluation we need following derivatives:

$$
\begin{aligned}
& \frac{\partial \mathrm{E}_{\mathrm{z}}}{\partial \mathrm{y}}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial \mathrm{y}}\left(\frac{z}{r^{3}}\right)=\frac{Q}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial \mathrm{y}}\left(\frac{z}{\left[x^{2}+y^{2}+z^{2}\right]^{\frac{3}{2}}}\right)=\frac{z Q}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial \mathrm{y}}\left(\left[x^{2}+y^{2}+z^{2}\right]^{-\frac{3}{2}}\right)= \\
& =\frac{z Q}{4 \pi \varepsilon_{0}}\left(\left(\frac{-3}{2}\right)\left[x^{2}+y^{2}+z^{2}\right]^{-\frac{5}{2}} 2 y\right)=\frac{-3 y z Q}{4 \pi \varepsilon_{0}}\left(\left[x^{2}+y^{2}+z^{2}\right]^{-\frac{5}{2}}\right) \\
& \frac{\partial \mathrm{E}_{\mathrm{y}}}{\partial \mathrm{z}}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial \mathrm{z}}\left(\frac{y}{\left[x^{2}+y^{2}+z^{2}\right]^{\frac{3}{2}}}\right)=\frac{-3 z y Q}{4 \pi \varepsilon_{0}}\left(\left[x^{2}+y^{2}+z^{2}\right]^{-\frac{5}{2}}\right)
\end{aligned}
$$

Rotation - example (field of electrical charge):
From the evaluated derivatives it follows:

$$
\frac{\partial \mathrm{E}_{\mathrm{z}}}{\partial \mathrm{y}}-\frac{\partial \mathrm{E}_{\mathrm{y}}}{\partial \mathrm{z}}=0
$$

In a similar way we can show:

$$
\frac{\partial \mathrm{E}_{\mathrm{x}}}{\partial \mathrm{z}}-\frac{\partial \mathrm{E}_{\mathrm{z}}}{\partial \mathrm{x}}=0 \quad \frac{\partial \mathrm{E}_{\mathrm{y}}}{\partial \mathrm{x}}-\frac{\partial \mathrm{E}_{\mathrm{x}}}{\partial \mathrm{y}}=0
$$

... and for the rotation it is valid:

$$
r o t \mathbf{E}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
E_{x} & E_{y} & E_{z}
\end{array}\right|=\mathbf{i}\left(\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}\right)+\mathbf{j}\left(\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}\right)+\mathbf{k}\left(\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}\right)=\mathbf{0}
$$

This result is valid for all points with the exception of the coordinate system origin, where $x=y=z=0$ (source area).

Differential operators:

There exist few special operations, which use partial derivatives and express properties of analyzed functions of several variables - so called differential operators:

- gradient (grad)
- divergence (div)
- rotation (rot)
- Laplacian operator (divgrad)

These are used in various descriptions and derivations of basic properties of physical fields.

Differential operators:

Laplacian operator - in mathematical physics is often used the following (combined) differential operator, input of the operation: scalar field output of the operation: scalar field

$$
\begin{gathered}
\operatorname{div}(\operatorname{grad} U)=\frac{\partial(\partial U / \partial x)}{\partial x}+\frac{\partial(\partial U / \partial y)}{\partial y}+\frac{\partial(\partial U / \partial z)}{\partial z} \\
\operatorname{div}(\operatorname{grad} U)=\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}+\frac{\partial^{2} U}{\partial z^{2}}
\end{gathered}
$$

Comment to the notation:
We can write gradient using the so called nabla or del operator ∇ :
$\operatorname{div}(\operatorname{grad} U)=\nabla \cdot(\nabla U)=\nabla^{2} U=\Delta U$

Differential operators:

Beside this combined operator (Laplacian), the are valid following equations:

$$
\begin{aligned}
& \operatorname{rot}(\operatorname{grad} U) \equiv 0 \\
& \operatorname{div}(\operatorname{rot} \mathbf{A}) \equiv 0
\end{aligned}
$$

These equations have important impacts on the properties of some physical fields:

- the first one tells that so called potential fields (which intensity can be expressed by means of the gradient) can not build curls,
- the second one tells us that in a curl there are no sources.

You can try to check it mathematically (make a proof) in a frame of a homework.

