Mathematics for Biochemistry

LECTURE 15

Complex numbers

Content:

- complex numbers, introduction
- complex numbers, basic operations
- complex numbers, functions

Basic objects in mathematics: numbers, sets

Different types of numbers have many different uses.
Numbers can be classified into sets, called number systems.

Subsets of the complex numbers.

Main number systems

\mathbb{N}	Natural	$0,1,2,3,4, \ldots$ or $1,2,3,4, \ldots$
\mathbb{Z}	Integer	$\ldots,-5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots$
\mathbb{D}	Rational	$\frac{a}{b}$ where a and b are integers and b is not 0
\mathbb{R}	Real	The limit of a convergent sequence of rational numbers
\mathbb{C}	Complex	$a+b i$ where a and b are real numbers and i is the square root of -1

$1.5=\frac{3}{2}>$ Ratio
Rational
$\pi=3.14159 \ldots=\frac{?}{?}($ No Ratio $)$
lrrational
i - so called imaginary unit

Complex numbers - introduction

Definition: A complex number is a number that can be expressed in the form $a+i b$, where a and b are real numbers and i is the imaginary unit, that satisfies the equation $i^{2}=-1$.
a - the so-called real part of the complex number, b - the so-called imaginary part of the complex number.

Complex numbers extend the concept of the onedimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part.
The complex number $a+i b$ can be identified with the point (a, b) in the complex plane.
A complex number whose real part is zero is said to be purely imaginary ($0+i b$), whereas a complex number whose imaginary part is zero is a real number ($a+i 0$). In this way, the complex numbers contain the ordinary real numbers while extending them in order to solve problems that cannot be solved with real numbers alone.

Example:
$\operatorname{Re}(-3.5+2 i)=-3.5$
$\operatorname{Im}(-3.5+2 i)=2$

Complex numbers - introduction

Definition: A complex number is a number that can be expressed in the form $a+i b$, where a and b are real numbers and i is the imaginary unit, that satisfies the equation $i^{2}=-1$.
a - the so called real part of the complex number, b - the so called imaginary part of the complex number.

Imaginary unit i was not selected randomly as $i^{2}=-1$, but because this plays very important role in various solutions of equations and other mathematical problems.

Example (quadratic equation with negative discriminant):

$$
\begin{array}{ll}
\mathrm{x}^{2}-3 \mathrm{x}+10=0 & x=\frac{-b \pm \sqrt{2}-4 a c}{2 a} \\
\mathrm{x}=\frac{3 \pm \sqrt{3^{2}-4 \cdot 1 \cdot 10}}{2}=\frac{3 \pm \sqrt{-31}}{2}=\frac{3 \pm \mathrm{i} \sqrt{31}}{2}=\begin{array}{l}
\mathrm{x}_{1}=3 / 2+(\mathrm{i} / 2) \sqrt{31} \\
\mathrm{x}_{2}=3 / 2-(\mathrm{i} / 2) \sqrt{31}
\end{array}
\end{array}
$$

Complex numbers - introduction

Definition: A complex number is a number that can be expressed in the form $a+i b$, where a and b are real numbers and i is the imaginary unit, that satisfies the equation $i^{2}=-1$.
a - the so-called real part of the complex number, b - the so-called imaginary part of the complex number.
back to the previous example:

$$
\begin{aligned}
& \mathrm{x}_{1}=3 / 2+(\mathrm{i} / 2) \sqrt{31} \\
& \mathrm{x}_{2}=3 / 2-(\mathrm{i} / 2) \sqrt{31}
\end{aligned}
$$

Complex solutions are plotted in the complex plane (so called Argand diagram):

$$
z=a+i b=x+i y
$$

Comment: \bar{z} is called as complex conjugate number (imaginary part has opposite sign).

Complex numbers - introduction

Form: A complex number can be written in two basic forms:

1. Cartesian form (with real and imaginary parts):

$$
z=a+i b=x+i y
$$

2. goniometric or exponential form (using the so-called Euler's formula):

$$
z=r(\cos \varphi+i \sin \varphi)=r e^{i \varphi} .
$$

where:
r - modulus (magnitude) of a complex number (also called as absolute value: $z=r=\sqrt{x^{2}+y^{2}}=\sqrt{ } z \cdot z$)
$\varphi-\operatorname{argument}$ of the complex number: $\operatorname{Arg}(z)=\varphi=\operatorname{arctg}(y / x)$ it is also valid (for $\mathrm{k}=0,1, \ldots$): $\arg (z)=\varphi=\operatorname{arctg}(y / x)+2 \pi k$

Comment to the imaginary unit:

$i=\sqrt{ }-1, i^{1}=i, \quad i^{2}=-1, i^{3}=i \cdot i^{2}=-i, i^{4}=i^{2} \cdot i^{2}=1, i^{5}=i^{4} \cdot i=i$
$i^{-1}=i / i^{2}=-i, \ldots$

Complex numbers - introduction

Euler's formulas:

$$
\begin{aligned}
& e^{i \varphi}=\cos \varphi+i \sin \varphi, e^{-i \varphi}=\cos \varphi-\operatorname{isin} \varphi, \\
& \cos \varphi=\frac{e^{i \varphi}+e^{-i \varphi}}{2} \\
& \sin \varphi=\frac{e^{i \varphi}-e^{-i \varphi}}{2 i}
\end{aligned}
$$

Derivation (proof) of these formulas via Taylor series.

Complex numbers - basic operations

Equality:

Two complex numbers are equal if and only if both their real and imaginary parts are equal.
We can write this in math-svmbols:

$$
z_{1}=z_{2} \leftrightarrow\left(\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right) \wedge \operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)\right)
$$

Conjugation:

The complex conjugate of the complex number $z=x+i y$ is defined to be $x-i y$. It is denoted \bar{z} or z^{*}.
Geometrically, conjugate complex number is the "reflection" of the complex number about the real axis. Conjugating twice gives the original complex number:

Conjugation distributes over the standard arithmetic operations:

$$
\begin{aligned}
& \overline{z+w}=\bar{z}+\bar{w} \\
& \overline{z-w}=\bar{z}-\bar{w} \\
& \overline{z w}=\bar{z} \bar{w} \\
& \overline{(z / w)}=\bar{z} / \bar{w}
\end{aligned}
$$

Complex numbers - basic operations

Addition and subtraction:

Complex numbers are added by adding the real and imaginary parts of the summands. Addition:

$$
(a+i b)+(c+i d)=(a+c)+i(b+d)
$$

Similarly, subtraction:

$$
(a+i b)-(c+i d)=(a-c)+i(b-d)
$$

Multiplication and division:

The multiplication of two complex numbers is defined by the following formula:

$$
(a+i b)(c+i d)=(a c-b d)+i(b c+a d)
$$

And, division:

$$
\begin{aligned}
& a+i b=\begin{array}{l}
a c+b d \\
c+i d
\end{array}=\begin{array}{c}
b c-a d \\
c^{2}+d^{2}
\end{array}+\begin{array}{c}
\\
c^{2}+d^{2}
\end{array}
\end{aligned}
$$

Complex numbers - basic operations

Multiplication and division:

We can use in a much more straight-forward way the exponential form of complex numbers:

$$
\begin{aligned}
& z_{1} z_{2}=r_{1} e^{i \varphi_{1}} \cdot r_{2} e^{i \varphi_{2}}=r_{1} r_{2} e^{i\left(\varphi_{1}+\varphi_{2}\right)} \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1} e^{i \varphi_{1}}}{r_{2} e^{i \varphi_{2}}}=\frac{r_{1}}{r_{2}} e^{i\left(\varphi_{1}-\varphi_{2}\right)}
\end{aligned}
$$

Or in the goniometric form:

$$
\begin{aligned}
& z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\varphi_{1}+\varphi_{2}\right)+i \sin \left(\varphi_{1}+\varphi_{2}\right)\right] \\
& z_{1}=\frac{r_{1}}{z_{2}}\left[\cos \left(\varphi_{1}-\varphi_{2}\right)+i \sin \left(\varphi_{1}-\varphi_{2}\right)\right]
\end{aligned}
$$

Complex numbers - basic operations

Raising to a power (exponentiation):

Here we can express this kind of operation much more effectively again with the exponential form of complex numbers:

$$
z^{n}=\left[r e^{i \phi}\right]^{n}=r^{n} e^{i n \phi}
$$

In Cartesian form this operation is more complicated and it utilises the so called binomial rule:
$z^{n}=(a+i b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k}(i b)^{k}$
where $\binom{n}{k}=\frac{n!}{(n-k)!k!}$

Complex numbers - basic operations

$n^{\text {th }}$ root evaluation:
Also here we can express this kind of operation much more effectively again with the exponential form of complex numbers:
$\sqrt[n]{z}=z^{\frac{1}{n}}=\left[r e^{i \phi}\right]^{\frac{1}{n}}=\left[r e^{i(\phi+2 k \pi)}\right]^{\frac{1}{n}}=r^{\frac{1}{n}} e^{\frac{i(\varphi+2 k \pi)}{n}}=$
$=r^{\frac{1}{n}} e^{i\left(\frac{\varphi}{n}+\frac{2 k \pi}{n}\right)}=\sqrt[n]{r}\left[\cos \left(\frac{\varphi}{n}+\frac{2 k \pi}{n}\right)+i \sin \left(\frac{\varphi}{n}+\frac{2 k \pi}{n}\right)\right]$
Here we can see that the result of nth root of a complex number is not unique - it has n solutions (for $k=0,1,2, \ldots n-1$).
These solutions lie on a circle with the radius $r^{1 / n}$ and their arguments are different by $2 \pi / n$.

Example

$$
\begin{gathered}
Z=1+i \quad \rightarrow \sqrt[4]{Z}=? \\
\Rightarrow Z=\sqrt{2} e^{i \frac{\pi}{4}} \rightarrow n=4 \rightarrow \sqrt[4]{Z}=Z^{\frac{1}{4}}=\left[\sqrt{2} e^{\left.i\left(\frac{\pi}{4}+2 k \pi\right)\right]^{\frac{1}{4}}}=2^{\frac{1}{8} e^{i\left(\frac{\pi}{16}+\frac{2 k \pi}{4}\right)}=2^{\frac{1}{8}} e^{i\left(\frac{\pi}{16}+\frac{k \pi}{2}\right)}} \begin{array}{l}
\varphi=\arctan \frac{1}{1}=\frac{\pi}{4}
\end{array}\right. \\
k=0 \rightarrow 2^{\frac{1}{8}} e^{i\left(\frac{\pi}{16}+\frac{k \pi}{2}\right)}=2^{\frac{1}{8}} e^{i \frac{\pi}{16}} \\
k=1 \rightarrow 2^{\frac{1}{8}} e^{i\left(\frac{\pi}{16}+\frac{\pi}{2}\right)}=2^{\frac{1}{8}} e^{i \frac{9}{16} \pi} \\
k=2 \rightarrow 2^{\frac{1}{8}} e^{i\left(\frac{\pi}{16}+\frac{2 \pi}{2}\right)}=2^{\frac{1}{8}} e^{i \frac{17}{16} \pi} \\
k=3 \rightarrow 2^{\frac{1}{8}} e^{i\left(\frac{\pi}{16}+\frac{3 \pi}{2}\right)}=2^{\frac{1}{8}} e^{i \frac{25}{16} \pi}
\end{gathered}
$$

Complex numbers - functions

We distinguish here two basic types:
a) complex functions of real variable,
b) complex functions of complex variable.
A) Complex function of real variable: we call $z=f(t)$ as complex function of real variable, when $z \in \mathrm{C}$ and $t \in \mathrm{R}$.

Examples:

1. $z=t \mathrm{e}^{i \alpha}, t \in\langle 0,+\infty>, \alpha=\mathrm{const}$.

Values of t from the interval $<0,+\infty>$ are displayed into a half-line in the complex plane (forming an angle α with the real axis).
$\mathrm{z}=t \mathrm{e}^{i \alpha}=t(\cos \alpha+i \sin \alpha) \Rightarrow x=t \cos \alpha, y=t \sin \alpha \Rightarrow y=x t g \alpha$.
(this is an equation for a line)
A) Complex function of real variable: we call $z=\mathrm{f}(t)$ as complex function of real variable, when $z \in \mathrm{C}$ and $t \in \mathrm{R}$

Examples:
2. $z=r \mathrm{e}^{i t}, r=$ const., $t \in<\alpha, \beta>, \alpha \geq 0, \beta \leq 2 \pi$.

Values of t from the interval $<\alpha, \beta>$ are displayed into a circle-arc in the complex plane (forming an angle α with the real axis).
$\mathrm{z}=r \mathrm{e}^{i t}=r(\cos t+i \sin t) \Rightarrow x=r \cos t, y=r \sin t$.
When we build sum of squares $x^{2}+y^{2}$, we obtain:
$x^{2}+y^{2}=r^{2} \cos ^{2} t+r^{2} \sin ^{2} t=r^{2}\left(\cos ^{2} t+\sin ^{2} t\right)=r^{2} \Rightarrow x^{2}+y^{2}=r^{2}$,
(this is the equation of a circle)
3. $z-\mathrm{z}_{0}=r \mathrm{e}^{i t}, r=$ const., $t \in<0,2 \pi>$.

This is a very similar example, compared with the previous one, result is a circle in the complex plane with the centre in point z_{0}.

Complex numbers - functions

B) Complex function of complex variable: we call $w=\mathrm{f}(z)$ as complex function of complex variable, when $w \in \mathrm{C}$ and also $z \in \mathrm{C}$. Such a function can be divided into its real and imaginary parts: $\mathrm{f}(z)=\mathrm{u}(x, y)+i \mathrm{v}(x, y)$.

These functions can have completely different properties like real number functions.

Complex numbers - functions

B) Complex function of complex variable:

Example: $f(z)=\cos (z)$.
For its analysis we use one of Euler's formulas: $\cos \varphi=\frac{e^{i \varphi}+e^{-i \varphi}}{2}$

$$
\cos (z)=\frac{1}{2}\left(e^{\mathrm{i} z}+e^{-\mathrm{i} z}\right)
$$

setting for $z=x+i y$ and by reformulating we get:

$$
\cos (z)=\cos (x+\mathrm{i} y)=\cos (x) \cosh (y)-\mathrm{i} \sin (x) \sinh (y)
$$

where we have used the hyperbolic functions $\sinh (x)$ and $\cosh (x)$:

$$
\begin{aligned}
& \cosh (y)=\frac{1}{2}\left(e^{y}+e^{-y}\right) \\
& \sinh (y)=\frac{1}{2}\left(e^{y}-e^{-y}\right)
\end{aligned}
$$

B) Complex function of complex variable:

Example: $\mathrm{f}(z)=\cos (z)$
$\cos (z)=\cos (x+\mathrm{i} y)=\cos (x) \cosh (y)-\mathrm{i} \sin (x) \sinh (y)$
Recognising here the form of this kind of function: $\mathrm{f}(z)=u(x, y)+i v(x, y)$:

$$
\begin{aligned}
& \operatorname{Re}[\cos (z)]=u(x, y)=\cos (x) \cosh (y) \\
& \operatorname{Im}[\cos (z)]=v(x, y)=-\sin (x) \sinh (y)
\end{aligned}
$$

First important thing, which we can see is that this function is not limited (like it was valid for the real function $\cos (x)$), but it can grow to $\pm \infty$ due to the properties of hyperbolic sine and cosine:
$|\cos (z)|=\left(u^{2}+v^{2}\right)^{1 / 2}=\left\{[\cos (x) \cosh (y)]^{2}+[\sin (x) \sinh (y)]^{2}\right\}^{1 / 2}$
Next property is its periodicity: $\cos (z)=\cos (z+2 k \pi)$, when $k=1,2, \ldots$
B) Complex function of complex variable:

Example: $\mathrm{f}(z)=\cos (z)$

$$
\cos (z)=\cos (x+\mathrm{i} y)=\cos (x) \cosh (y)-\mathrm{i} \sin (x) \sinh (y)
$$

Next thing is the analysis of its geometrical properties:

1. First, we take a line segment $y=y_{0}, x \in<0,2 \pi>$

Using $\cos ^{2} x+\sin ^{2} x=1$ we get:

This is equation of an ellipse.
B) Complex function of complex variable:

Example: $\mathrm{f}(z)=\cos (z)$
$\cos (z)=\cos (x+\mathrm{i} y)=\cos (x) \cosh (y)-\mathrm{i} \sin (x) \sinh (y)$
Next thing is the analysis of its geometrical properties:
2. Second, we take a line $x=x_{0}, y \in<-\infty,+\infty>$

$\begin{aligned} & \text { Using } \cosh ^{2} y-\sinh ^{2} y=1 \\ & \text { we get: }\end{aligned} \frac{u^{2}}{\cos ^{2} x_{0}}-\frac{v^{2}}{\sin ^{2} x_{0}}=1$
This is equation of a hyperbole.

model of physical field in close vicinity of an object (as a result of a solution, involving complex numbers)

Applications, involving complex numbers: improper integrals, geometry, signal analysis, fluid dynamics, dynamic equations, electromagnetism, quantum mechanics, relativity

