Mathematics for Biochemistry

LECTURE 16

Vectors

Content:

- Definition
- Operations

Vectors:

In mathematical physics for the description of physical quantities we recognise the following sequence of objects: scalars, vectors and tensors.
scalars (have only a magnitude or size)
(time, temperature, angle, length, ...)
vectors (have magnitude and direction)
(strength, velocity, acceleration, ...) $\mathbf{a}, \mathbf{A}, \vec{a}$
tensors (generalisation of a vector -
quantity has several dimensions) $\overline{\mathbf{T}}$
(tensor of tension,...)

Vectors - basic properties and operations:

Vector is given by its components (in Cartesian coordinate

$$
\vec{a}=\mathbf{a}=\left(a_{x}, a_{y}, a_{z}\right)
$$

size of the vector:

$$
|\mathbf{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}
$$

directional angles of the vector: α, β, γ

$$
\begin{aligned}
& a_{x}=|\mathbf{a}| \cos \alpha \\
& a_{y}=|\mathbf{a}| \cos \beta \\
& a_{z}=|\mathbf{a}| \cos \gamma
\end{aligned}
$$

Vectors - basic properties and operations:

Multiplication of a vector \mathbf{A} by a scalar f :

$$
\boldsymbol{A} \cdot f=f \cdot \boldsymbol{A}=\left(f A_{x} \boldsymbol{i}+f A_{y} \boldsymbol{j}+f A_{z} \boldsymbol{k}\right)
$$

Addition and subtraction of two vectors (\mathbf{A} and \mathbf{B}):

$$
\boldsymbol{A} \pm \boldsymbol{B}=\left(A_{x} \pm B_{x}\right) \boldsymbol{i}+\left(A_{y} \pm B_{y}\right) \boldsymbol{j}+\left(A_{z} \pm B_{z}\right) \boldsymbol{k}
$$

graphical way...

Vectors - basic properties and operations:

Scalar multiplication of a vector \mathbf{A} and \mathbf{B} :

$$
\begin{gathered}
\boldsymbol{A} \cdot \boldsymbol{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \\
\quad \text { or } \quad \text { (dot product) } \\
\boldsymbol{A} \cdot \boldsymbol{B}=|\boldsymbol{A}||\boldsymbol{B}| \cos \vartheta \quad
\end{gathered}
$$

where ϑ is the angle between these two vectors (\mathbf{A} and \mathbf{B}).
Result of this operation is a scalar (number).
When these vectors are orthogonal (angle between them is 90°), then scalar multiplication is equal to zero.

Comment: Scalar multiplication is commutative operation.

Vectors - basic properties and operations:

Vector multiplication of a vector \mathbf{A} and \mathbf{B} :
$\boldsymbol{A} \times \boldsymbol{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \boldsymbol{e}_{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \boldsymbol{e}_{y}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \boldsymbol{e}_{z}$
and (cross product)

$$
|\boldsymbol{C}|=|\boldsymbol{A}||\boldsymbol{B}| \sin \vartheta
$$

where ϑ is the angle between these two vectors (\mathbf{A} and \mathbf{B}).
Result of this operation is a vector.

Comment: Vector multiplication is anti-commutative operation.

$$
B \times A=-A \times B
$$

Vectors - basic properties and operations:

Vector multiplication of a vector \mathbf{A} and \mathbf{B} :
$\boldsymbol{A} \times \boldsymbol{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \boldsymbol{e}_{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \boldsymbol{e}_{y}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \boldsymbol{e}_{z}$
(cross product)

We can express this formula in a very compact form as a determinant with 3×3 elements:

$$
\boldsymbol{C}=\boldsymbol{A} \times \boldsymbol{B}=\left|\begin{array}{ccc}
\boldsymbol{e}_{x} & e_{y} & \boldsymbol{e}_{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

Vectors - basic properties and operations:

Mixed multiplication (triple product) of a vector \mathbf{A}, \mathbf{B} and \mathbf{C} :

$$
\begin{aligned}
& \boldsymbol{C} \cdot(\boldsymbol{A} \times \boldsymbol{B})=(\boldsymbol{A} \times \boldsymbol{B}) \cdot \boldsymbol{C} . \\
& \left|\begin{array}{lll}
C_{x} & C_{y} & C_{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=\boldsymbol{C} \cdot(\boldsymbol{A} \times \boldsymbol{B})
\end{aligned}
$$

Result of this operation is a scalar (number).
It is the volume of a paralelipiped with a base given by \mathbf{A} and \mathbf{B} vectors and \mathbf{C} is connected with its height.

Vectors - basic properties and operations:

Double vector multiplication of vectors \mathbf{A}, \mathbf{B} and \mathbf{C} :

$$
A \times(B \times C)=B(A \cdot C)-C(A \cdot B)
$$

Result of this operation is a vector.

Vectors - basic properties and operations

Linear combination of vectors

$$
\mathbf{v}=\alpha_{1} \mathbf{a}_{1}+\alpha_{2} \mathbf{a}_{2}+\alpha_{3} \mathbf{a}_{3}+\cdots \alpha_{n} \mathbf{a}_{n}
$$

$\boldsymbol{e}_{x} \equiv(1,0,0)$
$\boldsymbol{e}_{y} \equiv(0,1,0)$

$$
\mathbf{v}=\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3}
$$

$$
\boldsymbol{e}_{z} \equiv(0,0,1)
$$

Linearly dependent vectors

$$
\alpha_{1} \mathbf{a}_{1}+\alpha_{2} \mathbf{a}_{2}+\alpha_{3} \mathbf{a}_{3}+\cdots \alpha_{n} \mathbf{a}_{n}=\mathbf{0}
$$

where not all α_{i} are zero

