ZÁKLADY APLIKOVANEJ GRAVIMETRIE

Pašteka Roman a kol.

Katedra inžinierskej geológie, hydrogeológie a aplikovanej geofyziky, Prírodovedecká fakulta UK v Bratislave (použité aj materiály Ústavu vied o Zemi SAV a spoločnosti G-trend s.r.o.) roman.pasteka@uniba.sk

ZÁKLADY APLIKOVANEJ GRAVIMETRIE Obsah prednášky:

- ujasnene si základných pojmov (tiažové zrýchlenie g)
- fyzikálne jednotky v gravimetrii
- meranie tiažového zrýchlenia (prístroje)
- hustoty (minerálov a hornín)
- spracovanie meraní (úplné Bouguerove anomálie, ÚBA)
- interpretácia
- príklady využitia gravimetrie

METÓDY APLIKOVANEJ GEOFYZIKY

- gravimetria
- magnetometria
- geoelektrika
- seizmika
- karotáž
- rádiometria
- seizmológia

GRAVIMETRIA Meranie, vyhodnocovanie a interpretácia tiažových meraní ("gravis" – ťažký, "metrein" - merať)

GRAVIMETRIA: fyzikálna geodézia (tiažové pole tvar Zeme) a aplikovaná gravimetria (štúdium hustotných nehomogenít v litosfére)

UJASNENIE SI ZÁKLADNÝCH POJMOV hodnota g (tiažového zrýchlenia) je ... ? konštantná?

a) pre telesá s rozdielnou hmotnosťou v tom istom bode? b) pre telesá s rovnakou hmotnosťou v rôznych bodoch?

globálne anomálie tiažového poľa Zeme (zo satelitných meraní)

UJASNENIE SI ZÁKLADNÝCH POJMOV

Existuje vlastne rozdiel medzi gravitačným a tiažovým zrýchlením (alebo ide o synonymum)? (aj v angličtine: gravitational vs gravity acceleration)

gravitačné - "čistá príťažlivosť" Zeme (v zmysle "Newtonovho gravitačného zákona") tiažové (merané) – výsledok vektorového súčtu gravitačného zrýchlenia a odstredivého zrýchlenia Zeme

Pomer odstredivého a gravitačného zrýchlenia Zeme je veľmi malý ≈ 0.005 (na póle je g cca 9.83 m·s⁻², na rovníku cca 9.78 m·s⁻²)

(na póle je g cca 9.83 m·s⁻², na rovníku cca 9.78 m·s⁻²)

<u>Meraná veličina v gravimetrii</u>

Merané g je vektor, avšak pracujeme so skalárom g. používané jednotky v gravimetrii systém SI: jednotka m·s⁻² používané sú násobky: $1 \,\mu\text{m}\cdot\text{s}^{-2} = 10^{-6} \,\text{m}\cdot\text{s}^{-2}$ systém CGS: jednotka Gal $1 \text{ mGal} = 10 \ \mu \text{m} \cdot \text{s}^{-2}$ $1 \text{ mGal} = 10^{-5} \text{ m} \cdot \text{s}^{-2}$

 $1 \text{ Gal} = 10^{-2} \text{ m} \cdot \text{s}^{-2}$

 $1 \mu Gal = 0.001 mGal$

predstava o presnosti dnešných gravimetrických meraní

g = 9.82345678 m/s²

úroveň mGal

úroveň µGal

súčasné prístroje merajú s presnosťou $0.01 \text{ do } 0.001 \text{ mGal} = 10 \text{ do } 1 \mu \text{Gal}$

meranie v gravimetrii

prístroje na meranie tiažového zrýchlenia sa nazývajú gravimetre

<u>absolútne</u> gravimetre

laboratórne, vyššia presnosť: 0.001 mGal, voľný pád, pomalšie (hodiny)

relatívne gravimetre terénne, nižšia presnosť: 0.01-0.005 mGal, pružinový systém rýchlejšie (minúty)

Scintrex CG-5

relatívny (pružinový) gravimeterr meranie – automatické (tzv. Autograv systém)

lineárny systém

relatívny (pružinový) gravimeter

relatívny (pružinový) gravimeter

ZÁKLADY APLIKOVANEJ GRAVIMETRIE Obsah prednášky:

- ujasnene si základných pojmov (tiažové zrýchlenie g)
- fyzikálne jednotky v gravimetrii
- meranie tiažového zrýchlenia (prístroje)
- hustoty (minerálov a hornín)
- spracovanie meraní (úplné Bouguerove anomálie, ÚBA)
- interpretácia
- príklady využitia gravimetrie

Základný materiálový parameter v gravimetrii

hustota,

študujeme prejavy hustotných nehomogenít litosféry v nameranom (anomálnom) poli g

jednotky (systém SI): kg·m⁻³

používané sú násobky: 1 g·cm⁻³ = 1 kg·dm⁻³ = 1 Mg·m⁻³ = = 1000 kg·m⁻³

Rozpätie hustôt minerálov: od 0.98 (ľad) po 22.59 g·cm⁻³ (čisté Osmium) (príklad: olovo: 11.34 g·cm⁻³, zlato: 19.32 g·cm⁻³)

Rozpätie hustôt hornín: od 1.65 (hlina) po 3.35 g·cm⁻³ (eklogit) (granit: 2.65 g·cm⁻³, vápenec: 2.70 g·cm⁻³, fylit: 2.75 g·cm⁻³)

Priemerná hustota vrchnej časti zemskej kôry na základe gravimetrie je na platformách približne 2.67 g·cm⁻³. Často pracujeme s diferenčnými hustotami (rozdielmi).

<u>sedimentárne</u> <u>horniny</u>

dôležitý je nárast hustoty s hĺbkou
(kompakcia horniny ale narastá aj s jej vekom)

Obr. 3. Závislosť prirodzených hustôt na hĺbke panví. Vysvetlivky: 1 - viedenská panva, 2 - dunajská panva, 3 - Výchoslovenská nížina (Šefara et al., 1987)

nepriame metódy určovania hustôt – zo seizmológie

Meranie a základné spracovanie dát v gravimetrii:

- samotné meranie s prístrojom v teréne (potrebný je výber miesta a presné urovnanie prístroja)
- prevod na jednotky zrýchlenia (mGal) (pri moderných netreba)
- presné geodetické zameranie polôh bodov (najmä výšok)
- oprava o chod prístroja
- prepočet na absolútnu hodnotu (pri relat. meraniach) s využitím známych hodnôt (gravimetrické siete)
- výpočet chyby merania z kontrolných bodov (QC)
- výpočet tzv. Bouguerových anomálií (zahŕňa v sebe aj výpočet tzv. terénnych korekcií)

meranie v gravimetrii musí sa odstraňovať <u>tzv. chod prístroja (drift)</u> spôsobený: otrasmi, zmenami teploty a tlaku, slapovými účinkami Slnka a Mesiaca (moderné gravimetre vedia slapy zrátať a odstrániť)

meranie v gravimetrii

výsledkom meraní a opravy o chod je hodnota relatívneho tiažového zrýchlenia ∆g, ktoré sa prepočítava na jeho absolútnu hodnotu g, K tomu je potrebné takúto hodnotu g poznať aspoň v jednom bode (meranie s absol. grav. alebo sa využijú body štátnej siete)

Body Štátnej Polohovej Siete (ŠPS) u nás spravuje Geodetický a Kartografický Ústav Bratislava (GKÚ).

meranie v gravimetrii

Starší systém – tzv. Štátna Gravimetrická Sieť (ŠGS), taktiež pod správou GKÚ. Napojené na absolútne merania **g**.

v aplikovanej gravimetrii (na geologické účely) sa však nevyhodnocuje priamo zrýchlenie g, ale sa počítajú tzv.

> ÚPLNÉ BOUGUEROVE ANOMÁLIE (ÚBA)

Hlavná idea pri výpočte ÚBA spočíva v tom, že od <u>nameraných hodnôt</u> tiažového zrýchlenia godpočítame <u>teoretické hodnoty</u> g_t , vypočítané pre aproximáciu celého zemského telesa (aj s uvážením jeho reliéfu):

$UBA = g - g_t$

Meno nesie po fenomenálnom francúzskom polyhistorovi *Pierovi Bouguerovi*, ktorý sa ako prvý vôbec pokúšal o predikciu hodnôt meraného g (počas expedície do Južnej Ameriky v 18. stor.). Meno navrhol známy nemecký geodet F.R. Helmert.

Pierre Bouguer (1698 – 1758)

od účinku reálnej Zeme odpočítame...

... účinok elipsoidu v bode P (hodnotu "presunieme z elipsoidu" pomocou" prepočtu -0.3086h) (hustota vrchnej vrstvy elipsoidu sa predpokladá okolo 2.70 g·cm⁻³)

prejav hustotných nehomogenít v poli ÚBA

prejavia sa hustotné nehomogenity v rámci priestoru elipsoidu

... ďalej odpočítame účinok sférickej vrstvy v bode P (skladá sa z účinku rovinnej dosky a tzv. Bullardovho člena) (hustota tejto dosky sa už nastavuje - väčšinou na 2.67 g·cm⁻³)

prejav hustotných nehomogenít v poli ÚBA

prejavia sa ďalšie hustotné nehomogenity v rámci priestoru medzi elipsoidom a povrchom gule prechádzajúcej bodom P

...ešte treba odstrániť účinok topografických hmôt v bode P tzv. terénne korekcie (ošetrenie účinkov kopcov a dolín) (hustota je rovnaká ako pre dosku, často 2.67 g·cm⁻³)

prejav hustotných nehomogenít v poli ÚBA

výsledkom je prejav anomálnych hustotných nehomogenít v litosfére

prejav hustotných nehomogenít v poli ÚBA

Dôležité je si uvedomiť, že:

- Anomálne objekty sa prejavujú voči použitej korekčnej hustote (referenčné teleso),
- 2. Zároveň sa prejavujú ako kontrast voči okolitým štruktúram (uvedený kontrast označujeme ako diferenčnú hustotu)

napr. dutina sa prejaví diferenčnou hustotou –2.0 g·cm⁻³ voči okolitým horninám kvartérneho veku (so skutočnou prirodzenou hustotou 2.0 g·cm⁻³)

spracovanie v gravimetrii (tvorba ÚBA) vzťah pre výpočet ÚBA:

$UBA = g - g_n + 0.3086h - 0.0419h\rho - B + T$

g – meraná tiaž (opravená o chod a prepočítaná na absolútnu hodnotu) g_n – normálne pole (účinok elipsoidu) h – nadmorská výška bodu merania ρ – tzv. korekčná (redukčná) hustota (často 2.67 g.cm⁻³) 0.3086h – korekcia "vo voľnom vzduchu" (tzv. Fayeova) 0.0419hp – Bouguerova korekcia (účinok rovinnej dosky) B – Bullardov člen ("ohýba" rovinnú dosku) T – terénne korekcie (do vzdial. 166.7 km od bodu)

Poznámky ku čiastkovým krokom výpočtu UBA:

terénne korekcie (T):

- kopce a aj doliny sa vyplnia hmotami
 s korekčnou hustotou a ich účinok sa pripočíta,
- ich hodnota je väčšinou kladná (iba pri prejave "zanorených" kopcov v dôsledku zakrivenia Zeme sa môže zmeniť ich znamienko na záporné),
- oblasť výpočtu sa delí na zóny (T₁, T₂ a T₃)
 až do vzdialenosti 166.7 km od bodu výpočtu,
- hmoty sú aproximované elementárnymi geom. útvarmi (segmenty valca, hranoly, polyédre, atď.),
 <u>u nás používaný nový program</u> (Toposk).
Poznámky ku čiastkovým krokom výpočtu UBA: príklad: Oravský zámok

(vzduch = chýbajúce hmoty = pokles g)

spracovanie v gravimetrii (tvorba ÚBA) Iné typy gravimetrických anomálií:

anomália NUBA = g – g_n + 0.3086h – 0.0419hp sa nazýva ako <u>tzv. neúplná Bouguerova</u> anomália

anomália $\Delta g_{Fay} = g - g_n + 0.3086h$ sa nazýva ako <u>tzv. Fayeova (</u>odstránený vplyv výšok)

V aplikovanej gravimetrii sa používajú menej.

Príklad významu zavádzania korekcií v rámci výpočtu ÚBA:

 vymapovanie rozsahu maarového telesa, lokalita Pinciná pri Lučenci

príklad súčasného maaru, Nemecko

idealizovaná schéma výplne maarového telesa

Pozn.: Výplň maarových telies je budovaná tzv. horninami vulkanicko-timnického typu (bentonity, diatomity, alginity, ...)

nadmorské výšky

namerané tiažové zrýchlenie

Fayeova anomália: $\Delta g_F = g - g_n + 0.3086h$ (odstránený vplyv výšok)

Úplná Bouguerova anomália: UBA= g – g_n + 0.3086h – 0.0419ph – B + T

príklady v rámci územia SR:

príklad: Bánovská kotlina

merané g

nadm. výšky

ÚBA (2.67 g.cm⁻³)

extrémny príklad – Vysoké Tatry (terénne korekcie tu hrajú signifikantnú úlohu a zabraňujú vznik falošných anomálií)

územie Slovenska

ÚBA

reliéf

ÚBA – územie Slovenska

ÚBA – stredná a časť západnej Európy (projekt AlpArray)

ÚBA – stredná a časť západnej Európy (projekt AlpArray)

Earth Syst. Sci. Data, 13, 2165–2209, 2021 https://doi.org/10.5194/essd-13-2165-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

51

50

49

48

47

46

45

44

43

42

41

Latitude (°)

Science

The first pan-Alpine surface-gravity database, a modern compilation that crosses frontiers

Pavol Zahorec¹, Juraj Papčo², Roman Pašteka³, Miroslav Bielik^{1,3}, Sylvain Bonvalot^{4,5}, Carla Braitenberg⁶, Jörg Ebbing⁷, Gerald Gabriel^{8,9}, Andrej Gosar^{10,11}, Adam Grand³, Hans-Jürgen Götze⁷, György Hetényi¹², Nils Holzrichter⁷, Edi Kissling¹³, Urs Marti¹⁴, Bruno Meurers¹⁵, Jan Mrlina¹⁶, Ema Nogová^{1,3}, Alberto Pastorutti⁶, Corinne Salaun¹⁷, Matteo Scarponi¹², Josef Sebera⁷, Lucia Seoane^{4,5}, Peter Skiba⁸, Eszter Szűcs¹⁸, and Matej Varga¹⁹

 ¹Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
²Department of Theoretical Geodesy and Geoinformatics, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Radlinského 11, 810 05 Bratislava, Slovakia
³Department of Engineering Geology, Hydrogeology and Applied Geophysics, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkoviéčova 6, 842 48 Bratislava, Slovakia
⁴Bureau Gravimétrique International, Toulouse, France, GET, University of Toulouse, France
⁵CNRS, IRD, UT3, CNES, Toulouse, France

⁶Department of Mathematics and Geosciences, University of Trieste, Via Edoardo Weiss 1, 34128 Trieste, Italy ⁷Institute of Geosciences, Christian Albrechts University Kiel, Otto-Hahn-Platz 1, 24118 Kiel, Germany ⁸Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover, Germany ⁹Institute of Geology, Leibniz University Hannover, Callinstraße 30, 30167 Hannover, Germany ¹⁰Slovenian Environmental Agency, Seismology and Geology Office, Vojkova 1b, 1000 Ljubljana, Slovenia ¹¹Faculty of Natural Sciences and Engineering, University of Ljubljana,

Aškerčeva 12, 1000 Ljubljana, Slovenia ¹²Institute of Earth Sciences, University of Lausanne, UNIL-Mouline Géopolis, 1015 Lausanne, Switzerland ¹³Department of Earth Sciences, Federal Institute of Technology (ETH), Sonneggstrasse 5, 8092 Zürich, Switzerland ¹⁴Federal Office of Topography swisstopo, Wabern, Switzerland

¹⁵Department of Meteorology and Geophysics, University of Vienna, 1090 Vienna,

Althanstraße 14, UZA 2, Austria 16Institute of Geophysics, Czech Academy of Sciences, Boční II/1401, 141 31 Prague, Czech Republic

¹⁷Service Hydrographique et Océanographique de la Marine, 13 rue du Chatellier 29200 Brest, France ¹⁸Institute of Earth Physics and Space Science (ELKH EPSS),

Csatkai street 6-8, 9400 Sopron, Hungary ¹⁹Department of Civil, Environmental and Geomatic Engineering, Federal Institute of Technology (ETH), Stefano-Franscini-Platz 5, 8093 Zürich, Switzerland

Correspondence: Hans-Jürgen Götze (hajo.goetze@ifg.uni-kiel.de)

interpretácia v gravimetrii INTERPRETÁCIA –

kvalitatívna/kvantitatívna

kvalitatívna – opisuje kvalitatívne pole ÚBA (znížené hodnoty = znížené hustoty objektov alebo vplyv geometrie telies, zvýšené... naopak) kvantitatívna – určuje hĺbkové, rozmenrové, tvarové a hustotné parametre študovaných geologických objektov

dôležité pojmy:

- *a) priama úloha* pri zadaných parametroch telies vypočítať ich gravitačný účinok (tzv. <u>modelovanie</u>)
- b) obrátená úloha opačná úloha (náročnejšia)

interpretácia v gravimetrii

Anomálie od hustotných nehomogenít majú vždy "monopólový" charakter.

Tvar anomálie a jej amplitúda závisí od viacerých faktorov:

- tvar telesa,
- hĺbka uloženia telesa,
- hustotný kontrast.

Čím hlbšie sa nachádza teleso, tým je:

- nižšia amplitúda,
- väčšia vlnová dĺžka anomálie.

interpretácia v gravimetrii nejednoznačnosť (mnohoznačnosť) obrátenej úlohy

riešenie: doplňujúce informácie a údaje (geol./matfyz.)

Okrem toho je obrátená úloha aj nestabilná (malé odchýlky na vstupe do úlohy spôsobujú veľké zmeny v jej výstupe)

INTERPRETÁCIA – kvalitatívna priebeh gravitačného účinku (ÚBA) nad zlomom (poklesom)

INTERPRETÁCIA – kvalitatívna príklad: úplné Bouguerove anomálie z oblasti Mŕtveho mora (sedimenty mora sú ľahšie ako okolie)

INTERPRETÁCIA – metódy polovičnej šírky jednoduchý príklad – Bouguerova anomália prejavu soľného diapíru,lokalita Lousiana príbrežná oblasť) (Nettleton, 1976) z polovičnej šírky

INTERPRETÁCIA – modelovanie

využitie gravimetrie

- pri riešení hlbinnej stavby litosféry
- v regionálnej a štruktúrnej geológii
- v ložiskovom a ropnom prieskume
- detekcia dutín
 - (inžiniersky, geotechnický, environmentálny prieskum, archeológia, ...)
- všade tam, kde ide o detekciu a interpretáciu hustotných nehomogenít

aplikácie gravimetrie

niekoľko príkladov

hlbinná stavba

výsledok hustotného modelovania – profil z Európskej platformy cez Západné Karpaty do Panónskej oblasti,

Model siaha až do hĺbky okolo 170 km.

hlbinná stavba

výsledok hustotného modelovania – profil zo subdukcie oceanickej platne Nasca pod juhoamerický kontinent (model siaha až do 250 km)

ložisková geológia

mapa ÚBA

Výsledné modely ložiska podľa gravimetrie a magnetometrie.

Prieskum karbonatitového ložiska Catalao v Brazílii (Mantovani et al., 2014).

detekcia dutín - lokalita Wolfsberg, Rakúsko, 2012

priestor bývalej bane na hnedé uhlie (neogénny vek)

detekcia dutín - lokalita Wolfsberg, Rakúsko, 2012

výsledná mapa úplných Bouguerových anomálií (krok: 2 x 2 m)

lokalita Wolfsberg, Rakúsko, 2012

výsledky vrtného prieskumu (spolu s našimi hĺbkovými odhadmi – tzv. metóda Eulerovej dekonvolúcie)

lokalita Wolfsberg, Rakúsko, porovnanie rokov 2012 a 2016 (kontrolné merania)

Journal of Applied Geophysics 46 (2001) 249-262

www.elsevier.nl/locate/jappgeo

Integration of ground-penetrating radar and microgravimetric methods to map shallow caves

Milan Beres*, Marc Luetscher, Raymond Olivier

Institut de Géophysique, Collège Propédeutique, Université de Lausanne, CP, CH-1015 Lausanne, Switzerland

Received 1

Integration of ground-penetrating radar and microgravimetric methods to map shallow caves

Milan Beres*, Marc Luetscher, Raymond Olivier

Institut de Géophysique, Collège Propédeutique, Université de Lausanne, CP, CH-1015 Lausanne, Switzerland

Received 14 March 2000; accepted 12 February 2001

N S Distance (meter) 10 20 30 70 (b) Limestone Depth (meter) Time (nsec) 10 200 **Profile 4**

radargram – nemigrovaný rez

Integration of ground-penetrating radar and microgravimetric methods to map shallow caves

Milan Beres*, Marc Luetscher, Raymond Olivier

Institut de Géophysique, Collège Propédeutique, Université de Lausanne, CP, CH-1015 Lausanne, Switzerland

Received 14 March 2000; accepted 12 February 2001

radargram – migrovaný rez

Integration of ground-penetrating radar and microgravimetric methods to map shallow caves

Milan Beres*, Marc Luetscher, Raymond Olivier

Institut de Géophysique, Collège Propédeutique, Université de Lausanne, CP, CH-1015 Lausanne, Switzerland

Received 14 March 2000; accepted 12 February 2001

interpretácia – GPR vs. speleolog. prieskum

interpretácia – modelovanie mikrograv. anomálie

využitie gravimetrie

- pri riešení hlbinnej stavby litosféry
- v regionálnej a štruktúrnej geológii
- v ložiskovom a ropnom prieskume
- detekcia dutín
 - (inžiniersky, geotechnický, environmentálny prieskum, archeológia, ...)
- všade tam, kde ide o detekciu a interpretáciu hustotných nehomogenít

výsledky mikrogravimetrického prieskumu kostola Sv. Václava v Tovačove (Bližkovský 1976, 1979)

S

- mikrogravimetria v sieti 1 x 1 m a 2 x 2 m, spolu 262 bodov
- stredná kvadratická chyba meraného tiažového zrýchlenia = 0.011 mGal
- interpretované anomálie amplitúdou 0.06 mGal = 60 μGal

výsledky mikrogravimetrického prieskumu kostola Sv. Václava v Tovačove (Bližkovský 1976, 1979)

neúplné Bouguerove anomálie (bez topokorekcií a opráv na účinky múrov) korekcie gravitačného účinku múrov

výsledky mikrogravimetrického prieskumu kostola Sv. Václava v Tovačove (Bližkovský 1976, 1979)

úplné Bouguerove anomálie (s opravami na účinky múrov) gravitačný účinok známych krýpt

výsledky mikrogravimetrického prieskumu kostola Sv. Václava v Tovačove (Bližkovský 1976, 1979)

v priestore výslednej negatívnej anomálie boli nájdené nové, dovtedy neznáme priestory

výsledok: tzv. úplné odkryté (stripped) Bouguerove anomálie (s odstránením účinkov známych dutín)

výsledky geofyzikálneho prieskumu Dómu sv. Mikuláša v Trnave

Obr. 8 Mapa priebehu lokálnych neúplných Bouguerových anomálií v priestore kostola (so zavedením opráv o gravitacný úcinok múrov a odstráneným trendom), kor. hustota = 1.80 g.cm²

spojenie výsledkov mikrogravimetrie a metódy georadaru (GPR), overené videoinšpekciou

výsledky geofyzikálneho prieskumu kostola sv. Juraja v Juri

mikrogravimetria

mikrograv. + GPR (0.6 m)

príkladové štúdie (mikrogravimetria) SR

Cheopsova pyramída, Egypt – francúzsky mikrogravimetrický projekt

By LACQUES LARSHMANAN Compagnie de Prospection Géogépolger Française Passence, France and ACQUES MONTLUCON Electricité de France Paris, France

Cheopsova pyramída, Egypt – francúzsky mikrograv. projekt

štruktúra pyramídy

merané priestory

Cheopsova pyramída, Egypt – francúzsky mikrograv. projekt

tvorba Bouguerovej anomálie odstránenie gravitačných účinkov známych štruktúr

model hustotného "rozvrstvenia" pyramídy

Cheopsova pyramída, Egypt – francúzsky mikrograv. projekt <u>Výslecky</u>

hustotné nehomogenity na základe mikrogravimetrie z roku 1988 (svetlejšie - dutiny)

dôležitý výsledok – mapa ÚBA z prístupovej chodby do "královninej" pohrebnej miestnosti

Cheopsova pyramída, Egypt – francúzsky mikrograv. projekt <u>Výsledky</u>

hlavný výsledok z roku 1988:

zistenie dominantnej negatívnej anomálie v západnej časti prístupovej chodby do "královninej" pohrebnej miestnosti

overenie anomálie:

3 vrty dosiahli po 2.1 m dutinu vyplnenú pieskom, (modelovaný objem dosahuje až 40 m⁻³)

Cheopsova pyramída, Egypt – francúzsky mikrograv. projekt <u>Výsledky – možná interpretácia</u>

Densities of the large block structure of the Cheops Pyramid.

zvyšok pieskovej rampy

pre záujemcov: článok Pašteka, Kovár, Historická revue 4, ročník XXII, 2011

Zaujímavosť – rok 2017: objavenie novej dutiny (tzv. Big Void) v Cheopsovej pyramíde pomocou registrácie kozmického žiarenia (muóny).

Zaujímavosť – rok 2017: objavenie novej dutiny (tzv. Big Void) v Cheopsovej pyramíde pomocou registrácie kozmického žiarenia (muóny).

Bolo by možné prítomnosť tejto dutiny overiť presnými gravimetrickými meraniami na povrchu pyramídy?

modelované 4 scenáre (výška 5 a 7 m)

Bolo by možné prítomnosť tejto dutiny overiť presnými gravimetrickými meraniami na povrchu pyramídy? – asi áno...

Hrubá izočiara približne vymedzuje plochu, v rámci ktorej by mohla byť daná dutina "merateľná" pomocou súčasných moderných gravimetrov.

Contents lists available at ScienceDirect

Journal of Archaeological Science: Reports

journal homepage: www.elsevier.com/locate/jasrep

R. Pašteka^{a,*}, P. Zahorec^b, J. Papčo^c, J. Mrlina^d, H.-J. Götze^e, S. Schmidt^e

^a Department of Engineering Geology, Hydrogeology and Applied Geophysics, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 48 Bratislava, Slovak Republic

^b Division of Geophysics, Earth Science Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic

^c Department of Theoretical Geodesy and Geoinformatics, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 810 05 Bratislava, Slovak Republic

^d Institute of Geophysics of the Czech Academy of Sciences, Boční II/1401, 141 31 Prague 4, Czech Republic

e Department of Geophysics, Institute for Geosciences, Christian-Albrechts University, Otto-Hahn-Platz 1, 24118 Kiel, Germany

ARTICLE INFO

Keywords: Pyramid chamber 3D gravity model Microgravity measurement Muon scanning Big Void Archaeogeophysics

ABSTRACT

In this study we have investigated the question as to whether highly accurate microgravimetric measurements on the side of a pyramid could also map the recently discovered "muon chamber" in the Great Pyramid of Giza in Egypt. Exploiting the technical capabilities of modern gravimeters, we performed three-dimensional model calculations with realistic model parameters obtained from published literature. Under ideal experimental conditions researchers are able to measure relatively small gravity effects around -1×10^{-7} ms⁻². However, to transfer the model scenario to investigating the real-world pyramid chamber we need to know what the chamber may contain – such knowledge can help in estimating a more realistic result.

aplikovaná gravimetria - zhrnutie

- meraná veličina: tiažové zrýchlenie g [mGal]
- prístroje: gravimetre (relatívne)
- neinterpretujeme priamo hodnoty g, ale počítame tzv. Úplnú Bouguerovu Anomáliu (ÚBA)
- interpretácia (kvalitatívna, kvantitatívna), nie vždy jednoznačná – treba dpolňujúce informácie (geol./matfyz.)
- možnosti použitia: všade tam, kde ide o detekciu a interpretáciu hustotných nehomogenít

ZÁKLADY APLIKOVANEJ GRAVIMETRIE

www.kaeg.sk

Ďakujem za pozornosť!