

Qualitative analysis of higher derivatives ratios of Bouguer anomaly map from pan-Alpine region

Roman Pašteka¹, Miroslav Bielik^{1,2}, Pavol Zahorec², Juraj Papčo³, Roland Karcol¹, Ema Nogová^{1,2}

 ¹Department of Engineering Geology, Hydrogeology and Applied Geophysics, Comenius University in Bratislava
 ²Earth Science Institute, Slovak Academy of Sciences, Bratislava
 ³Department of Global Geodesy and Geoinformatics, Slovak University of Technology, Bratislava

Qualitative analysis of higher derivatives ratios of Bouguer anomaly map from pan-Alpine region

x [m]

Motivation:

use of higher derivatives

 (and their ratios) as edge
 mappers for better delineation
 of interpreted structures

original field (TMI)

[nT]

- 14 - 12

- 10

-8

--6

so called theta-derivative transformation (exact description will be given later)

x [m]

... but:

- what to do with the strong noise/errors amplification during higher derivatives evaluation?
- in other words evaluation of numerical derivatives is an instable operation and we have to find ways for its stabilization

synthetic magnetic field of a sphere (without noise)

numerically evaluated vertical derivative

numerically evaluated vertical derivative (intensive noise amplification – up to 30-40%)

synthetic magnetic field of a sphere (with 5% Gaussian noise)

Qualitative analysis of higher derivatives ratios of Bouguer anomaly map from pan-Alpine region

Content of the presentation:

- motivation
- edge detectors (based on derivatives ratios)
- Tikhonov regularization in numerical derivatives evaluation
- derivative edge detectors: Bouguer anomaly map from the pan-Alpine region
- conclusions

edge mappers (used in potential field geophysics):

- majority of them is based on derivatives ratios

- derivatives of the input field: $\partial f/\partial x$, $\partial f/\partial y$ and $\partial f/\partial z$,
- horizontal gradient: $HG = \sqrt{(\partial f/\partial x)^2 + (\partial f/\partial y)^2}$,
- analytical signal: AS = $\sqrt{(\partial f/\partial x)^2 + (\partial f/\partial y)^2 + (\partial f/\partial z)^2}$,
- tilt derivative: tilt = arctg $\frac{\partial f/\partial z}{HG}$, (Miller and Singh, 1994; Verduzco et al., 2004)
- theta derivative: $\cos(\theta) = \frac{\text{HG}}{\text{AS}}$, (Wijns et al., 2005)
- TDX derivative: TDX = $\operatorname{arctg} \frac{\text{HG}}{\partial f/\partial z}$, (Cooper and Cowan, 2006)

edge mappers (used in potential field geophysics):

- majority of them is based on derivatives ratios

(from Fairhead and Williams, 2006)

- derivatives of the input field: $\partial f / \partial x$, $\partial f / \partial y$ and $\partial f / \partial z$,
- horizontal gradient: $HG = \sqrt{(\partial f/\partial x)^2 + (\partial f/\partial y)^2}$,
- analytical signal: AS = $\sqrt{(\partial f/\partial x)^2 + (\partial f/\partial y)^2 + (\partial f/\partial z)^2}$,
- tilt derivative: tilt = arctg $\frac{\partial f/\partial z}{HG}$, (Miller and Singh, 1994; Verduzco et al., 2004)
- theta derivative: $\cos(\theta) = \frac{\text{HG}}{\text{AS}}$, (Wijns et al., 2005)
- TDX derivative: TDX = $\operatorname{arctg} \frac{\text{HG}}{\partial f / \partial z}$, (Cooper and Cowan, 2006)

edge mappers (used in potential field geophysics):

- majority of them is based on derivatives ratios (newer modifications)

/

... and many others.

Excellent review paper from Núñez-Demarco et al. (2020, Surveys in Geophysics).

In this study - we have tried 2 new transformations (TPC and MHGA)

1) tilt angle plus and complementary angle = TPC (reaches values $+\pi/2$ over sources and $-\pi/2$ outside them)

2) next (new) transformation – MHGA (Hanbing et al., submited):

(reaches values +1 over edges and -1 outside them)

intermediate function R is calculated, and afterwards function MHGA (using the concept of linear saturated function):

synthetic model (2 objects):

Qualitative analysis of higher derivatives ratios of Bouguer anomaly map from pan-Alpine region

Content of the presentation:

- motivation
- edge detectors (based on derivatives ratios)
- Tikhonov regularization in numerical derivatives evaluation
- derivative edge detectors: Bouguer anomaly map from the pan-Alpine region
- conclusions

Stabilization of derivatives - Tikhonov regularization:

- classical low-pass filtering in the space domain (e.g. Hamming window) or in the Fourier domain (e.g. Butterworth filter),
- more sophisticated methods utilize the Wiener optimum filtering approach (e.g., Pawlowski and Hansen 1990) or enhanced derivatives (Fedi and Florio 2001) – the so called ISVD method; upward continuation
- we use in this contribution the **Tikhonov's regularization approach** (Tikhonov et al., 1968; Pašteka et al., 2009), which derives the shape of low-pass filter as a result of an optimisation problem (minimisation of two main functionals):

minimisation of two functionals (error functions)

M.

the first describes the closeness to the <u>classical solution</u> for the derivative

the second describes <u>its stability</u> (smoothnes)

Stabilization of derivatives - Tikhonov regularization:

solution for the regularized derivative (in horizontal direction) in Fourier domain, 1D case (Pašteka et al., 2009):

$$\widetilde{y}(k) = \frac{1}{1 + \alpha k^2} i k \widetilde{U}_{\delta}(k)$$

where: k - wave number,

 α – regularization parameter,

 $\widetilde{U}_{\delta}(k)$ – spectrum of original function,

 $\tilde{y}(k)$ – spectrum of regularized derivative.

In 2023 colleague Assoc. Prof. Roland Karcol has changed the basic optimalization problem formulation – result of this is a new (better) solution, which we call as "general form" of the regularized derivative operator.

(Karcol, Pašteka, 2024, submitted to the journal Geophysics):

$$\tilde{y}(k) = \frac{1}{1 + \alpha(ik)k^2} ik\tilde{U}_{\delta}(k)$$

so called general form

Stabilisation of derivatives - Tikhonov regularization:

The most important task in regularization techniques – **selection of the optimum value of regularization parameter**, there exist a variety of methods (e.g. the L-curve, GCV method), we use the **C-norm** approach (Tikhonov et al., 1968).

example of regularized derivative calculation: y-derivative (part of CBA from central Slovakia)

standard y-derivative (without regularization) regularized y-derivative

Qualitative analysis of higher derivatives ratios of Bouguer anomaly map from pan-Alpine region

Content of the presentation:

- motivation
- edge detectors (based on derivatives ratios)
- Tikhonov regularization in numerical derivatives evaluation
- derivative edge detectors: Bouguer anomaly map from the pan-Alpine region
- conclusions

transformations: Bouguer anomaly map from pan-Alpine region (with regularized derivatives)

local maxima define boundaries (tectonics)

HG – horizontal gradient

transformations: Bouguer anomaly map from pan-Alpine region (WITHOUT regularized derivatives)

local maxima define boundaries (tectonics)

HG – horizontal gradient

transformations: Bouguer anomaly map from pan-Alpine region (with regularized derivatives)

binary map: +π/2 over sources (positive anomalies) -π/2 outside them

TPC - tilt angle plus and compl. angle

transformations: Bouguer anomaly map from pan-Alpine region (with regularized derivatives)

local maxima define boundaries (tectonics)

MHGA

Conclusions (methodical):

- **stabilized derivatives** (e.g. by means of the proposed Tikhonov approach) can **improve the information content** of the edge mappers and remove noise amplification
- during the **C-norm function analysis**, there is still need for a skill from the side of the user, but its involvement can help to select the **proper interval of low-pass filter parameter**
- in general, we are not able now to recommend "the best"
 edge mapper (we usually try several of them and then try to select)

Conclusions (interpretational):

- general experience: "edge mappers can not recover on principle new features (compared with the original field), but can help better to understand the most important features
- manifestation of tectonics can be deformed due to the resolution of used maps (grids) here it is the case of 4x4m, or 2x2km
- we will be happy, if other experts will use these results (we can send them in any graphical form and coordinate system)

Thanks for your attention.

algorithm of Tikhonov's regularization of derivatives evaluation

